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Chapter One Mathematics 89 

1.1 Introduction, Nomenclature and Conventions 90 

Introduction 91 

 The coverage of mathematics given here exceeds that needed for most current relaxation 92 

applications but is given for (i) additional interest (as background for the derivation of some results that 93 

are relevant to relaxation phenomena); (ii) satisfying intellectual curiosity; (iii) exposition of 94 

mathematical techniques that are currently not common but might be in the future. 95 

 96 

Nomenclature 97 

 Exponential functions with argument A are written as exp (A). Natural logarithms are used 98 

throughout (with a few exceptions) and are written as ln (base 10 logarithms are denoted by log). 99 

Algebraic powers are written explicitly; for example square roots are written as fractional 1
2  exponents 100 

rather than . Averages are denoted by angular brackets, <...>, and sets of variables or other 101 

mathematical objects are enclosed in braces, {…}. Vectors are denoted by boldface arrowed fonts (e.g. 102 

F ), tensors by boldface fonts without arrows (e.g. F), matrices by curved brackets (…), and 103 

determinants by straight braces ... . Angles are expresses in radians. Complex functions are denoted by 104 

an asterisk F* and complex conjugates are denoted by a dagger †F . Real parts of a complex function are 105 

denoted by a prime and the imaginary components by a double prime, for example P*(iz) = P'(x,y) + 106 

iP"(x,y). The type of argument(s) for named functions are generally indicated by x or y for real 107 

arguments and iz for complex ones. 108 

 Many additional properties of the mathematical functions discussed here are given in tabulations 109 

such as those in Abramowitz and Stegun [1]. Several books devoted to physical applications of 110 

mathematics or to special mathematical topics such as complex functions give more detailed expositions 111 

[3-7]. There are also a large number of websites, unfortunately too often transient and therefore not cited 112 

here. 113 

 114 

Conventions 115 

 The mathematics and applications of complex numbers have an inherent ambiguity associated 116 

with the positive and negative signs of the square root of (–1). In the phenomenological world of 117 

classical relaxation the sign of the square root determines the physically irrelevant direction of rotation 118 

in the complex plane and the ambiguity is resolved by a sign convention. Unfortunately, electrical 119 

engineers use a different convention than everybody else. Electrical engineers use the positive sign for 120 

the argument of the complex exponential: exp(jωt). Scientists and mathematicians use the convention 121 

that ensures that the charge on a capacitor lags behind the applied voltage that implies that the imaginary 122 

component of the complex refractive index is negative (see Chapter 2); this in turn enforces a negative 123 

sign for the argument of the complex exponential, exp(–iωt), in order that exponential attenuation occurs 124 

in an absorbing medium. This is the convention adopted here. These conventions are distinguished by 125 

electrical engineers writing  
1/ 2

1  as j and everyone else writing it as i. An excellent discussion of the 126 

merits of using i is given in [2].  127 
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1.2 Summary of Elementary Results 128 

1.2.1 Solution of a Quadratic Equation 129 

 Solutions of the quadratic equation (all coefficients real) 130 

 131 
2

2 1 0 0a z a z a               (1.1) 132 

 133 

are 134 

 135 

 
1/2

2

1 1 0 24

2

a a a a
z

  
 .          (1.2) 136 

 137 

There are two real solutions for  2

1 0 24 0a a a  , and two complex conjugate roots for  2

1 0 24 0a a a  . 138 

 139 

1.2.2 Solution of a Cubic Equation 140 

 For 141 

 142 
3 2

2 1 0 0z a z a z a              (1.3) 143 

 144 

define 145 

 146 

 

 

 

2

1 2

2

1 2 0 2

1/2
1/2

3 2

1

1/2
1/2

3 2

2

/ 3 / 9,

3 / 6 / 9,

,

.

q a a

r a a a a

s r q r

s r q r

 

  

   
  

   
  

          (1.4) 147 

 148 

The three solutions are then 149 

 150 

 

    

    

1 1 2 2

1/21
2 1 2 2 1 22

1/21
2 1 2 2 1 22

/ 3,

/ 3 3 / 2 ,

/ 3 3 / 2 .

z s s a

z s s a i s s

z s s a i s s

  

     

     

.        (1.5) 151 

 152 

These three roots are related as 153 

 154 

1 2 3 2

1 2 1 3 2 3 1

1 2 3 0

,

,

.

z z z a

z z z z z z a

z z z a

   

  

 

           (1.6) 155 

 156 
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The types of roots are: 157 

 158 
3 2

3 2

3 2

0 (one real and a pair of complex conjugates),

0 (all real of which at least two are equal),

0 (all real).

q r

q r

q r

 

 

 

      (1.7) 159 

 160 

1.2.2 Arithmetic and Geometric Series 161 

Arithmetic Series: 162 

 163 

 

1

1

2

n

k

n n
k




 .           (1.8) 164 

 165 

Geometric Series: 166 

 167 

 1
1

m
n

n m

x
x x

x





 


 ,         (1.9) 168 

 169 

Special cases: 170 

 171 

 
1

1 ,
1

n

n

x
x x

x





 


            (1.10) 172 

 
0

1
1

1

n

n

x x
x





 


 .         (1.11) 173 

 174 

1.2.3 Full and Partial Derivatives 175 

 The relation between the full differential and partial differential of a function f(x,y) is 176 

 177 

y x

df f f dy

dx x y dx

     
      

     
          (1.12) 178 

 179 

or 180 

 181 

y x

f f
df dx dy

x y

   
    

    
 ,          (1.13) 182 

 183 

from which 184 

 185 

 

 

1

.
y

f fx

f xy x

x f y y

      
    

      
          (1.14) 186 

Also,  187 
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 188 

y y y

f f w

x w x

       
     

       
          (1.15) 189 

 190 

and 191 

 192 
2

yx y

f f

x y x y y x

       
     

         
. [CHECK]       (1.16) 193 

 194 

1.2.4 Differentiation of Definite Integrals 195 

Liebnitz’s theorem 196 

 197 

 
 

   

( )
( )

( )
( )

,
, , ,

b y
b y

a y
a y

f x yd db da
f x y dx dx f b y f a y

dy y dy dy


  







  .     (1.17) 198 

 199 

1.2.5 Integration by Parts 200 

 Integration of 201 

 202 

   d F x G x FdG GdF             (1.18) 203 

 204 

yields 205 

 206 

   
dG dF

F x G x F dx G dx
dx dx

   
    

   

 
 
 

,       (1.19) 207 

 208 

so that 209 

 210 

   
dG dF

F dx F x G x G dx
dx dx

   
    

   

 
 
 

.        (1.20) 211 

 212 

1.2.6 Binomial Expansions 213 

 The coefficients of n m mc x  in the expansion of (x±c)
n
 are given by 214 

 215 

 
 

 

1 !
1

! !

m

m n n

m m n m

 
  

 
,         (1.21) 216 

 217 

where (!) signifies the factorial function x! = x(x-1)(x-2) … 1 (see §1.3.1). For example the binomial 218 

expansion of (x-1)
4
 is x

4
 - 4x

3
 + 6x

2
 - 4x + 1. 219 

 220 
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1.2.7 Partial Fractions 221 

 For the generic function  1/ i ix x   the coefficient of (x–xj)
–1

 is  1/ i j j ix x   so that 222 

 223 

 

 

 
  

j

ji i i j j i i

f xf x

x x x x x x

 
  

         
 ,       (1.22) 224 

 225 

provided the denominator does not have repeated roots. For example 226 

 227 

        

     

1 2

1 2 1 1 2 2 1 2

1 2

1 2 1 2

1

x a x ax a

x x x x x x x x x x x x

x a x a

x x x x x x

 
 

     

  
  

   

.     (1.23) 228 

 229 

 For repeated roots 230 

 231 

   

1

1

1
mn

m

n m
m

A x

x d x d






 

 ,         (1.24) 232 

 233 

where the coefficients Am are all proportional to [x
n-1

(x-d)]
-1

 with the numerical coefficients of x
m-1

 being 234 

those for the binomial expansion of (x-1)
n-1

. For example  235 

 236 

         

2 3

4 2 33

1 1 3 3
1

x x x

d x d x dx d x d x d

  
     

       

.     (1.25) 237 

 238 

1.2.7 Coordinate Systems in Three Dimensions 239 

 The location of a point in three dimensional space can be specified in several ways, according to 240 

the coordinate system chosen. Examples: 241 

 242 

Cartesian Coordinates {x,y,z} 243 

 These are mutually orthogonal linear axes and are sometimes denoted by {x1,x2,x3} or similar. 244 

The direction of the z–axis is defined by the right hand rule for right handed Cartesian coordinates: if 245 

rotation of the x-axis towards the y–axis is seen as counterclockwise then the z axis points towards the 246 

viewer. 247 

 248 

Cylindrical Coordinates {r,φ,z} 249 

 Retain the Cartesian z–axis but specify the location in the x–y plane in terms of circular 250 

coordinates r and φ: 251 

 252 
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2 2 2 ,

cos ,

sin ,

r x y

x r

y r





 





            (1.26) 253 

 254 

where φ is the angle between the x-axis and the radius joining the origin with the projection of the point 255 

onto the x–y plane. 256 

 257 

Spherical Coordinates {r,φ,θ} 258 

 Retain r and φ from the cylindrical system but specify the z position by the angle θ between the 259 

line in the x–y plane joining the origin with the projected point, and that joining the origin with the point 260 

itself: 261 

 262 
2 2 2 3 ,

sin cos ,

sin sin ,

cos .

r x y z

x r

y r

z r

 

 



  







           (1.27) 263 

 264 

1.3 Advanced Functions 265 

Note: some of the material in this section refers to, or depends on, results that are discussed in 266 

section §1.8 on complex variables. 267 

1.3.1 Gamma and Related Functions 268 

 The gamma function Γ(z) is a generalization of the factorial function (x–1)! to complex variables, 269 

to which it reduces when z is a positive real integer: 270 

 271 

   1

0

expzz t t dt



   .    [Re(z) > 0]       (1.28) 272 

 273 

For real x 274 

 275 

Γ(x)=(x–1)!.           (1.29) 276 

 277 

Γ(z) has the same recurrence formula as the factorial, Γ(z+1)=zΓ(z), with singularities at negative real 278 

integers [1/Γ(x) is oscillatory about zero for x<0]. A special value is Γ(x)Γ(1–x)=π/sin(πx), from which 279 

Γ(1/2)=(–1/2)!=π
1/2

. For large z Γ(z) is given by Stirling’s approximation: 280 

 281 

     
1/2 1/2lim 2 expz

z
z z z 


    .  arg z           (1.30) 282 

 283 

The beta function B(z,w) is 284 

 285 
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     (1.31) 286 

 287 

and the Psi or Digamma function is  288 

 289 

 
 

 

     

 

 
 

0

0

ln exp exp1

1 exp

1
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1
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d z d z t zt
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dz z dz t t
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t
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     (1.32) 290 

 291 

The incomplete gamma function is defined for real variables x and a as 292 

 293 

 
 

 1

0

1
, exp

a

xG x a t t dt
x

 
  .         (1.33) 294 

 295 

1.3.2 Error Function 296 

The error function erf(z) is an integral of the Gaussian function discussed in §1.4.1: 297 

 298 

   2

1/2

0

2
erf exp

z

z t dt


  .         (1.34) 299 

 300 

The complementary error function erfc(z) is 301 

 302 

     2

1/2

2
erfc =1 erf exp

z

z z t dt




   .        (1.35) 303 

 304 

An occasionally encountered but apparently unnamed function is 305 

 306 

     
   

   

2 2

2

2 2

0

2 2

1/2

0

exp exp
exp erfc

2
exp 1 exp .

z

t ti i
w z z iz dt dt

z t z t

i
z t dt

 



 



 
    

 

 
   

 

 
 
 



.    (1.36) 307 

 308 

The functions erf and erfc commonly occur in diffusion problems. 309 

 310 
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1.3.3 Exponential Integrals 311 

 The exponential integrals En(z) and Ei(z) are (n an integer) 312 

 313 

 
 

1

exp
n n

zt
E z dt

t









,          (1.37) 314 

 315 

 
   exp exp

x

x

t t
Ei x P dt P dt

t t

 

 

 
  

 
 
 

,        (1.38) 316 

 317 

where P denotes the Cauchy principal value (see §1.8.4). 318 

 319 

1.3.4 Hypergeometric Function 320 

 This function F(a,b,c,z) is the solution to the differential equation 321 

 322 

      21 1 0,z zz z d c a b z d ab F z         .       (1.39) 323 

 324 

where n

zd  denotes the n
th
 derivative (the superscript is omitted for n=1). Its series expansion is 325 

 326 

   

 
 

   

 0

, , , 1.
!

k

k

a b a k b k
F a b c z z z

c k c k





      
  

   
      (1.40) 327 

 328 

Its Barnes Integral definition is 329 

 330 

   

 
 

     

 
 

1
, , ,

2

i

s

i

a b a s b s s
F a b c z z ds

c i c s

 

 

        
  

   





,    (1.41) 331 

 332 

where the path of integration passes to the left around the poles of Γ(–s) and to the right of the poles of 333 

Γ(a+s)Γ(b+s). The integral definition of F(a,b,c,z) is preferred over the series expansion because the 334 

former is analytic and free of singularities in the z-plane cut from z=0 to z=+∞ along the non-negative 335 

real axis, whereas the series expansion is restricted to 1z  . The hypergeometric function has three 336 

regular singularities at z=0, z=1, and z=+∞. Since solutions to most second order linear homogeneous 337 

differential equations used in science rarely have more than three regular singularities, most named 338 

functions are special cases of F(a,b,c,z). Examples: 339 

 340 

   1 , , ,
a

z F a b b z


  ,         (1.42) 341 

     1/ ln 1 1,1,2,z z F z   ,         (1.43) 342 

   exp lim , , , /
a

z F a b b z a


 .         (1.44) 343 

 344 
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1.3.5 Confluent Hypergeometric Function 345 

 This function F(a,c,z) is obtained by replacing z by z/b in F(a,b,c,z) so that the singularity at z=1 346 

is replaced by one at z=b. For b→∞ F(a,c,z) acquires an irregular singularity at z=∞ formed from the 347 

confluence of the regular singularities at z=b and z=∞ so that 348 

 349 

   , , lim , , , /
b

F a c z a b c z b


 .          (1.45) 350 

 351 

The function F(a,c,z) is also seen to be a solution to [cf. eq. (1.39)] 352 

 353 

   2 0z zzd c z d a F z      ,         (1.46) 354 

 355 

and the Barnes integral representation is 356 

 357 

 

 
 

   

 
 

1
, ,

2

i

s

i

a a s s
F a c z z ds

c i c s

 

 

     
  

   





      (1.47) 358 

 359 

that can be shown to be equivalent to 360 

 361 

   

 
     

1
11

0

, , exp 1
ac a

c a a
F c a c z zt t t dt

c

 
  

    
  .      (1.48) 362 

 363 

where      , , exp , ,F c a c z z F a c z      364 

 365 

1.3.6 Williams-Watt Function 366 

This function probably holds the record for its number of names: Williams-Watt (WW), 367 

Kohlrausch-Williams-Watt (KWW), fractional exponential, stretched exponential. We use 368 

WilliamsWatt in this book. The function is 369 

 370 

   exp 0 1
t

t



 


  
     

   

.        (1.49) 371 

 372 

It is the same as the Weibull reliability distribution described below [eq. (1.90)] but with different values 373 

of β. The distribution of relaxation (or retardation) times g(τ) used in relaxation applications is defined 374 

by 375 

 376 

 exp ln exp ln
t t

g d



 
 





    
      
     

 ,       (1.50) 377 

 378 
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but cannot be expressed in closed form. The mathematical properties of the WW function have been 379 

discussed in detail by Montrose and Bendler [8] and of the many interesting properties described there 380 

we single out just one: in the limit β→0 the distribution g(lnτ) approaches the log-gaussian form  381 

 382 

         
21/2 2

0
lim ln 1/ 2 exp ln / / 1/ .g


       


       
    (1.51) 383 

 384 

1.3.7 Bessel Functions 385 

 Bessel functions are solutions to the differential equation 386 

 387 

     2 2 2 2 2 2 0z z z zz z z y z z z y              
   

,      (1.52) 388 

 389 

where v is a constant corresponding to a v
th
 order Bessel function solution, and there are Bessel 390 

functions of the 1
st
, 2

nd
 and 3

rd
 kinds for each order. This multiplicity of forms makes Bessel functions 391 

appear more intimidating than they are. To make matters worse several authors have used their own 392 

definitions and nomenclature (see ref [1] for example). Bessel functions frequently arise in problems 393 

that have cylindrical symmetry because in cylindrical coordinates {r,φ,z} Laplace’s partial differential 394 

equation 
2 0f   is 395 

 396 

  2 2

2

1 1
0r r zr y

r r


  
        

  
.        (1.53) 397 

 398 

If a solution to eq. (1.53) of the form f=R(r)Φ(θ)Z(z) is assumed (separation of variables) then the 399 

ordinary differential equation for R becomes 400 

 401 

   2 2 0r rrd rd R kr      ,        (1.54) 402 

 403 

that is seen to be the same as eq. (1.52). The constant k usually depends on the boundary conditions of 404 

the problem and can sometimes depend on the zeros of the Bessel function Jv (see below). Bessel 405 

functions of the 1
st
 kind and of order v are written as Jv(x) and Bessel functions of the 2

nd
 kind are 406 

written as J–v(x). When v is not an integer Jv(x) and J(x)–v are independent solutions and the general 407 

solution is a linear combination of them: 408 
 409 

 
     

 
 

cos
noninteger

sin

J x J x
Y x v

 








 ,      (1.55) 410 

 411 

where the trigonometric terms are chosen to ensure consistency with the solutions for integer v=n for 412 

which Jv(x) and J–v(x) are not independent: 413 

 414 

     1
n

n nJ x J x   .          (1.56) 415 

 416 

Also  417 

 418 
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1 1

2
n n n

n
J J J

x
 

 
   

 
            (1.57) 419 

 420 

Bessel functions Hv(x) of the 3
rd

 kind are defined as 421 

 422 

     

     

1

2

,

,

H x J x iY x

H x J x iY x

  

  

 

 
          (1.58) 423 

 424 

and are sometimes called Hankel functions. Bessel functions are oscillatory and in the limit x→∞ are 425 

equal to circular trigonometric functions. This is apparent from eq. (1.52) when x→∞: 426 

 2 2 2 20x xx d x y d y y     , which is the differential equation for sin(x) and cos(x). 427 

 428 

1.3.8 Orthogonal Polynomials 429 

 Polynomials Pp(x) that are characterized by a parameter p is orthogonal within an interval (a,b) if 430 

 431 

   
 

 

1

0
,

b

m n mn

a

m n
P x P x dx

m n



 







          (1.59) 432 

 433 

where δmn is the Kronecker delta. 434 

 435 

1.3.8.1 Legendre 436 

Legendre polynomials  P x  for real arguments are solutions to the differential equation  437 

 438 

     2 21 2 1 0  a positive integerx xx d xd y     
 

,     (1.60) 439 

 440 

and often occur as solutions to problems with spherical symmetry for which the coordinates of choice 441 

are the spherical ones {r,φ,θ}. Orthogonality is ensured only if 0 1x  . The simplest way to derive 442 

the first few Legendre coefficients is to apply the Rogrigues generating function 443 

 444 

   21
1

2 !

d
P x x

dx
  ,          (1.61) 445 

 446 

that becomes tedious for high values of  but is of little consequence for physical applications. The first 447 

four Legendre polynomials are (for 1x  ) P0=1; P1=1; P2=(3x
2
–1)/2, and P3=(5x

3
–3x)/2. 448 

Associated Legendre polynomials  mP x  are solutions to the differential equation 449 

 450 

     
2

2 2 2 2

2
1 2 1 0  a positive integer, ,

1
x x

m
x d xd y m

x


  
       

  
    (1.62) 451 

 452 

and are related to  P x  by 453 
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 454 

     
/2

21
m

m m

xP x x d P x  .          (1.63) 455 

 456 

The parameter m can be positive or negative so that for example possible m values for 1  are  457 

m=–1, 0, +1. 458 

 459 

Spherical harmonics U(φ,θ)  ,U    are defined by 460 

 461 

   
 

 

sin
, cos .

cos

m
m

U P
m


  




 


,         (1.64) 462 

 463 

where 1x   is automatic and orthogonality is ensured. The most important equation in physics for 464 

which spherical harmonics are solutions is probably the Schrodinger equation for the hydrogen atom. 465 

Indeed the mathematical structure of the periodic table of the elements is essentially that of spherical 466 

harmonics, the most significant difference between the two being that the first transition series occurs in 467 

the 4
th
 row rather than in the 3

rd
. Other deviations occur at the bottom of the periodic table because of 468 

relativistic effects. 469 

 470 

1.3.8.2 Laguerre 471 

 Laguerre polynomials Ln(x) are solutions to 472 

 473 

 2 1 0x xxd x d n y      .          (1.65) 474 

 475 

They have the generating function 476 

 477 

      
1

exp exp
!

n n

n xL x x d x x
n

 
     

 
         (1.66) 478 

 479 

and recursion relations 480 

 481 

   

1

1

1 1

0,

0,

1 2 1 0.

n n
n

n
n n

n n n

dL dL
L

dx dx

dL
x nL nL

dx

n L n x L nL





 

  

 
   

 

     

         (1.67) 482 

 483 

The first three Laguerre polynomials are L0=1; L1=1–x; L2=1–2x+x
2
/2. 484 

 485 

1.3.8.3 Hermite 486 

These polynomials Hn(x) are solutions to the equation 487 

 488 

 2 2 2 1 0x x nd x d n H                 (1.68) 489 
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 490 

and have the recursion relations 491 

 492 

1

1 1

2 0,

2 2 0.

n
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n n n

dH
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dx

H xH nH



 

 

  

           (1.69) 493 

 494 

Hn(r) are solutions to the radial component of the Schroedinger equation for the hydrogen atom and are 495 

also proportional to the derivatives of the error function: 496 

 497 
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.       (1.70) 498 

 499 

Also      1
n

n nH x H x   . The first five Hermite polynomials are H0=1; H1=2x; H2=4x
2
–2; 500 

H3=8x
3
 – 12x; H4=16x

4
–48x

2
+12.  501 

 502 

1.3.9 Sinc Function 503 

 Defined as 504 

 505 

 
 sin

sinc
x

x
x

 .           (1.71) 506 

 507 

The value of sinc(0)=1≠∞ arises from  
0

lim sin
x

x x


   . The sinc function is proportional to the Fourier 508 

transform of the rectangular function 509 

 510 
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         (1.72) 511 

 512 

and arises in the study of optical effects of rectangular apertures. The function sinc
2(x) is proportional to 513 

the Fourier transform of the triangular function 514 

 515 
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         (1.73) 516 

 517 

Relations between the parameters defining the width and height of the Rect and Triang functions and the 518 

parameters of the sinc function are given in [2]. 519 

520 
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1.3.10 Airy Function 521 

 This function Ai(x) is defined in terms of the Bessel function J1(x) as 522 

 523 

 
 

2

12
Ai

J x
x

x

  
   
   

,          (1.74) 524 

 525 

and is the analog of sinc
2(x) for a circular aperture. Its properties are used to define the Rayleigh 526 

criterion for optical resolution for circular apertures. The relation between the parameters of the Airy 527 

function and the diameter of the circular aperture is again given in [2]. 528 

 529 

1.3.11 Struve Function 530 

 This function Hv(z) is part of the solution to the equation  531 

 532 
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         (1.75) 533 

 534 

where f(z)=aJv(z)+bYv(z)+Hv(z). Its recurrence relations are 535 

 536 
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        (1.76) 537 

 538 

For positive integer values of v=n and real arguments the functions Hn(x) are oscillatory with 539 

amplititudes that decrease with increasing x [1], as expected from their relation to the Bessel function 540 

Jn+1/2(x) for positive integer n: 541 

 542 

       1/21/2
1 .

n

nn
H x J x 

            (1.77) 543 

 544 

1.4 Elementary Statistics [SECTION NEEDS CHECKING] 545 

 Reference [7] gives an excellent account of statistics at the basic level discussed here. 546 

1.4.1 Probability Distribution Functions 547 

1.4.1.1 Gaussian 548 

 The Gaussian or Normal distribution N(x) is 549 

 550 
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exp

22

x
N x



 

  
  

  

.        (1.78) 551 

 552 
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N(x) is often referred to as the normal distribution because it specifies the probability of measuring a 553 

randomly (normally) scattered variable x with a mean (average) μ and a breadth of scatter parameterized 554 

by the standard deviation σ. The n
th

 moments or averages of the n
th

 powers of x are 555 

 556 
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1/2 2

1
exp

22

n n
x

x x dx


 





  
  

  






 .        (1.79) 557 

 558 

It is easily verified that x   by first changing the variable from x to y=x–μ and then recognizing that 559 

 2 2expny a y dy





  is zero for odd values of n. The normal distribution of randomly distributed 560 

variables is always approached in the limit of an infinite number of observations but corrections are 561 

applied to the idealized formulae for a finite number n of observations. The most common example of 562 

this is the estimate for σ, traditionally given the symbol s: 563 

 564 
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,           (1.80)  565 

 566 

compared with 567 

 568 
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,          (1.81) 569 

 570 

where the square of the standard deviation σ
2
 is the variance. The probability of observing a value 571 

within any given (not necessarily integer) number q of standard deviations qσ from the mean is the 572 

confidence level (often expressed as a percentage). The probability p of finding a variable between μ±a 573 

is 574 

 575 

1/2 1/2
erf erf

2 2

a q
p



   
    

   
.          (1.82) 576 

 577 

Thus the probabilities of observing values within ±σ, ±2σ and ±3σ of the mean are 68.0%, 95.4% and 578 

99.9% respectively. The distribution in s
2
 for repeated sets of observations is the 

2  or “chi-squared” 579 

distribution discussed below. 580 

 If a limited number of observations of data that have an underlying distribution with variance σ2
 581 

produce an estimate x  of the mean, and these sets of observations are repeated n times, then it can be 582 

proved that the distribution in x  is normal and that the standard deviation of the distribution of 583 

measured mean values is σ/n
1/2

. The quantity σ/n
1/2 is often called the standard error in x to distinguish it 584 

from the standard deviation σ of the distribution in x. The inverse proportionality to n
1/2

 is a 585 
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quantification of the intuitive idea that more precise means result when the number of repititions n 586 

increases. 587 

 For a function F(xi) of multiple variables {xi}, each of which is normally distributed and for 588 

which the standard deviations σi (or their estimates si) are known, the variance in F(xi) is given by 589 

 590 
2 2

2 2 2

F i i

i ii i

F F
s

x x
 

    
    

    
  .         (1.83) 591 

 592 

If F is a linear function of the variables i i

i

F a x  then 
2

F
  is the ai weighted sum of the individual 593 

variances. If F is the product of variables F=Πxi and σF is expressed as a fraction of the mean then 594 

 595 
2 2

iF

i iF x

   
      

   
 .           (1.84) 596 

  597 

 Distributions other than the Gaussian also arise but the central limit theorm asserts that in the 598 

limit n→∞ the distribution in sample averages obtained from any underlying distribution of individual 599 

data is Gaussian. 600 

 601 

1.4.1.2 Binomial Distribution 602 

 The binomial distribution B(r) expresses the probability of obtaining r successes in n trials given 603 

that the individual probability for success is p: 604 

 605 
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.         (1.85) 606 

 607 

1.4.1.3 Poisson Distribution 608 

This distribution P(x) is defined as  609 

 610 

 
 

 
exp

0
!

x

P x
x

 


 
  
 

 .         (1.86) 611 

 612 

The mean and the variance of the Poisson distribution are both equal to μ so that the standard deviation 613 

is μ
1/2

. The Poisson distribution is useful for describing the number of events per unit time and is 614 

therefore clearly relevant to relaxation phenomena. If the average number of events per unit time is v 615 

then in a time interval t there will be vt events on average and the number x of events ocurring in time t 616 

follows the Poisson distribution with μ = vt: 617 

 618 

 
   exp

,
!

xt t
P x t

x

  
 
 
 

.         (1.87) 619 

 620 

Processes that are random in time are referred to as stochastic processes. 621 

622 
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 623 

1.4.1.4 Exponential Distribution 624 

This function E(x) is 625 

 626 

 
 exp 0

0 0

x x
E x

x

   
 


.        (1.88) 627 

 628 

1.4.1.5 Weibull Distribution 629 

This function W(t) is  630 

 631 

     1 exp 1m mW t m t t m    .        (1.89) 632 

 633 

The Weibull reliability function R(t) is 634 

 635 

     
0

' ' exp

t

mR t W t dt t   ,         (1.90) 636 

 637 

where R(t) is often used for probabilities of failure. The similarity to the WW function is evident. 638 

 639 

1.4.1.6 The Chi-Squared Distribution 640 

 This function is a particularly useful tool for data analyses. For repeated sets of n observations 641 

from an underlying distribution with variance σ
2
 the variance estimates s

2
 obtained from each set will 642 

exhibit a scatter that follows the χ
2
 distribution (see also §1.4.1.1). The quantity χ

2
 is actually a variable 643 

rather than a function, 644 

 645 
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2

1n s





 .           (1.91) 646 

 647 

For empirical data the usual definition of χ
2
 is 648 

 649 
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x x
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 . ???       (1.92) 650 

 651 

The nomenclature χ
2
 rather than χ is used to emphasize that χ

2 is positive definite because (n–1), s2
 and 652 

σ
2
 are also positive definite. Note that very small or very large values of χ

2
 correspond to large 653 

differences between s and σ, indicating that the probability of them being equal is small.  654 

 The χ
2
 distribution is referred to here as  2

vP   and is defined by 655 

 656 
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,       (1.93) 657 

 658 
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where v  is the number of degrees of freedom The term outside the integral in eq. (1.93) ensures that 659 

these probabilities integrate to unity in the limit χ2→∞. Equations (1.33) and (1.93) indicate that  2

v
P   660 

is equivalent to the incomplete gamma function G(x,a). 661 

 Pv(χ
2) is the probability that s

2
 is less than χ

2
 when there are n degrees of freedom; it is also 662 

referred to as a confidence limit α so that (1–α) is the probability that s
2
 is greater than χ

2
. The integral 663 

in eq. (1.93) has been tabulated but software packages often include either it or the equivalent 664 

incomplete gamma function. Tables list values of χ
2
 corresponding to specified values of α and n and are 665 

written as 
2

,v  in this book. Thus if an observed value of χ
2
 is less than a hypothesized value at the 666 

lower confidence limit α, or exceeds a hypothesized value at the upper confidence limit (1–α), then the 667 

hypothesis is inconsistent with experiment. The chi-squared distribution is also useful for assessing the 668 

uncertainty in a variance σ
2
 (i.e. the uncertainty in an uncertainty!), as well as assessing any agreement 669 

between two sets of observations or between experimental and theoretical data sets. 670 

 For example suppose that a theory predicts a measurement to be within a range of μ 20  at a 671 

95% confidence level (±2σ) so that σ = 10 and σ
2
 = 100, and that 10 experimental measurements 672 

produce a mean and variance of 312x   and s
2
 = 195 respectively. Is the theory consistent with 673 

experiment? Since s
2
>σ

2
 the qualitative answer is no but this does not specify the confidence limits for 674 

this conclusion. To answer the question quantitatively we need to find if the theoretical value of χ
2
 at 675 

some confidence level is outside the experimental range. If it is then the theory can be rejected at the 676 

95% confidence level. The first step is to compute       2

heory

2 2
1 / 9 195 / 100 17.55

t
n s     . The 677 

second step is to find from tables that 
2

16.9
calc

   for  2

vP   = 5% = 0.05 and 9 degrees of freedom, and 678 

since this is less than 17.55 it lies outside the theoretical range and the theory is rejected. In this example 679 

the mean x  is not needed. 680 

 681 

1.4.1.7  F Distribution 682 

 If two sets of observations, of sizes n1 and n2 and variances 
2

1s  and 
2

2s  that each follow the χ
2
 683 

distribution, are repeated then the ratio 
2 2

1 2
/F s s  follows the F-distribution: 684 

 685 
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,      (1.94) 686 

 687 

Thus if F » 1 or F « 1 then there is a low probability that 
2

1s  and 
2

2s  are estimates of the same σ
2
 and the 688 

two sets can be regarded as sampling different distributions. The F distribution quantifies the probability 689 

that two sets of observations are consistent, for example sets of theoretical and experimental data. As an 690 

example consider the analysis of enthalpy relaxation data for polystyrene described by Hodge and 691 

Huvard [9]. The standard deviations for five sets of experimental data were computed individually, as 692 

well as that for a set computed from the averages of the five. The latter was assumed to represent the 693 

population and an F-test was used to identify any data set as unrepresentative of this population at the 694 

95% confidence level. The F statistic was 1.37 so that 2 21/1.37 0.73 / 1.37s    . The values of s
2
 695 

for two data sets were found to be outside this range and were rejected as unrepresentative and further 696 

analyses were restricted to the three remaining sets. 697 

698 



Page 21 of 112 

 

 

1.4.1.8 Student t–Distribution 699 

 This distribution S(t) is defined as 700 

 701 
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,        (1.95) 702 

 703 

where 704 

 705 

 
1/2

/

X
t

Y n
            (1.96) 706 

 707 

and X is a sample from a normal distribution with mean 0 and variance 1 and Y follows a χ
2
 distribution 708 

with n degrees of freedom. An important special case is when X is the mean μ and Y is the variance σ
2
 of 709 

a repeatedly sampled normal distribution (μ and σ are statistically independent even though they are 710 

properties of the same distribution): 711 

 712 

 1/2/

x
t

s n


 ,           (1.97) 713 

 714 

where n is the number of degrees of freedom that is often one less than the number of observations used 715 

to determine x . 716 

1.4.2 Student t–Test 717 

 The Student t–test is useful for testing the statistical significance of an observed result compared 718 

with a desired or known result. The test is analogous to the confidence level that a measurement lies 719 

within some fraction of the standard deviation from the mean of a normal distribution. The specific 720 

problem the t-test addresses is that for a small number of observations the sample estimate s of the 721 

standard deviation σ is not a good one and this uncertainty in s must be taken into account. Thus the t–722 

distribution is broader than the normal distribution but narrows to approach it as the number of 723 

observations increases. Consider as an example ten measurements that produce a mean of 11.5 and a 724 

standard deviation of 0.50. Does the sample mean differ "significantly" from that of another data set 725 

with a different mean, μ = 12.2 for example. The averages differ by (12.2-11.5)/0.5 = 1.40 standard 726 

deviations. This corresponds to a 85% probability that a single measurement will lie within ±1.40σ but 727 

this is not very useful for deciding whether the difference between the means is statistically significant. 728 

The t statistic [eq. (1.97)] is    1/2/ /x s n  = (11.5-12.2)/(0.5/3) = 4.2, compared with the t–statistics 729 

confidence levels 2.5%, 1% and 0.1% for nine degrees of freedom: 2.26, 2.82 and 4.3 respectively 730 

(obtained from Tables and software packages). This indicates that there is only a 2 0.1 0.2%   731 

probability that the two means are statistically indistinguishable, or equivalently a 99.8% probability that 732 

the two means are different and that the two means are from different distributions. For the common 733 

problem of comparing two means from distributions that do not have the same variances, and of making 734 

sensible statements about the liklihood of them being statistically distinguishable or not, the only 735 

additional data needed are the variances of each set. If the number of observations and standard 736 

deviation of each set are {n1,s1} and {n2,s2}, the t-statistic is characterized by n1+n2–2 degrees of 737 

freedom and a variance of  738 
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.     (1.98) 740 

 741 

1.4.3 Regression Fits 742 

 A particularly good account of regressions is given in Chatfield [7], to which the reader is 743 

referred to for more details than those given here. Amongst other niceties this book is replete with 744 

worked examples. Two frequently used criteria for optimization of an equation to a set of data {xi,yi} are 745 

minimization of the regression coefficient r discussed below [eq. (1.109)], and of the sum of squares of 746 

the differences between observed and calculated data. The sum of squares for the quantity y is: 747 

 748 
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   .          (1.99) 749 

 750 

Minimization of 2

y  for y being a linear function of independent variables {x} is achieved when the 751 

differentials of 2

y  with respect to the parameters of the linear equation are zero. For the linear function 752 

y=a0+a1x for example, 753 

 754 

   
2

2 2 2 2 2

0 1 0 0 0 1 1

1 1

2 2 2 2

0 0 0 1 1

2 2 2

2 2 2 ,

n n

y i i i i i i i i i

i i

i

y a a x y a a x a y a a x a x y

Sy na a Sx a Sy a a Sx a Sxy

 

         

     

 
   (1.100) 755 

 756 

where the notation 
1

n

i

S


  has been used. Equating the differentials of 2

y  with respect to a0 and a1 to 757 

zero yields respectively 758 
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              (1.101) 760 

 761 

and 762 

 763 
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     .         (1.102) 764 

 765 

The solutions are 766 

 767 
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          (1.103) 768 

 769 

and 770 

 771 
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.          (1.104) 772 

 773 

 The uncertainties in a0 and a1 are 774 
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         (1.105) 776 

 777 

and 778 
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,          (1.106) 780 

 781 

where  782 

 783 
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.         (1.107) 784 

 785 

The quantity (n–2) in the denominator of eq. (1.107) reflects the loss of 2 degrees of freedom by the 786 

determinations of a0 and a1. For N+1 variables xn, that can be powers of a single variable x if desired, 787 

eqs (1.101) and (1.102) generalize to  788 

 789 
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n m N m

n

n

a Sx S x y m N  



  ,       (1.108) 790 

 791 

that constitute N+1 equations in N+1 unknowns that can be solved using Cramers Rule [eq. (1.119)]. 792 

For minimization of the sum of squares 2

x  in x the coefficients in 0 1' 'x a a y   are obtained by simply 793 

exchanging x and y in eqs. (1.99) - (1.108). The two sets of linear coefficients produce different fits that 794 

however get closer as the scatter of the {x,y} data around a straight line decreases. 795 

 To minimize the scatter around any functional relation between x and y the maximum value of 796 

the correlation coefficient r, defined by eq. (1.109) below, needs to be found: 797 

 798 
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where  ,calc iy  are the calculated values of y obtained from the experimental  ix  data using the 802 

equation to be best fitted, and  ,obs iy  are the observed values of  iy . Note that  ,calc iy  and  ,obs iy  are 803 

interchangeable as must be. 804 

 The variable set {xn} can be chosen in many ways, in addition to the powers of a single variable 805 

already mentioned. For an exponential fit for example they can be exp(x) or ln(x), and they can also be 806 

chosen to be functions of x and y and other variables. A simple example is fitting (T,Y) data to the 807 

Arrhenius function 808 

 809 

3/2 exp
B

Y AT
T

  
  

 
          (1.110) 810 

 811 

that is linearized using 1/T as the independent variable and ln(YT
3/2

) as the dependent variable. 812 

 It often happens that an equation contains one or more parameters than cannot be obtained 813 

directly by linear regression. In this case (essentially practical for only one additional parameter) 814 

computer code can be written that finds a minimum in r as a function of the extra parameter. Consider 815 

for example the Fulcher temperature dependence for many dynamic quantities (typically an average 816 

relaxation or retardation time): 817 

 818 
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 .          (1.111) 819 

 820 

Once linearized as  0ln ln /F FA B T T     this equation can be least squares fitted to {T,τ} data using 821 

the independent variable 1

0( )T T   with trial values of T0. This (limited) technique allows the 822 

uncertainties in A and B to be computed from eqs. (1.105) and (1.106) but not the uncertainty in T0. 823 

 Software algorithms are usually the only option when more than 3 best fit parameters need to be 824 

found from an equation or a system of equations. These algorithms find the extrema of a user defined 825 

objective function Φ (typically the maximum in the correlation coefficient r) as a function of the desired 826 

parameters. Algorithms for this include the methods of Newton-Raphson, Steepest Descent, Levenberg-827 

Marquardt (that combines the methods of Steepest Descent and Newton-Raphson), Simplex, and 828 

Conjugate Gradient. The Simplex algorithm is probably the best if computation speed is not an issue 829 

(usually the case these days) because it has a small (smallest?) tendency to get trapped in a local 830 

minimum rather than the global minimum. 831 

 832 

1.4.3.1 Prony Series for Exponential Functions 833 

 Determination of the coefficients gn in the Prony series    
1

exp /
N

n n

n

t g t 


   commonly arises 834 

in relaxation applications. A common difficulty with this task is choosing the best value for N because 835 

larger values of N can (counterintuitively) sometimes lead to poorer fits. A good technique is to fit data 836 

with a range of N and find the value of N that produces the best fit (using a reiterative algorithm for 837 

example). Software algorithms are also available that constrain the best fit gn values to be positive that 838 

must be for relaxation applications. 839 

 840 
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1.6 Matrices and Determinants 841 

 A determinant is a square two dimensional array that can be reduced to a single number 842 

according to a specific procedure. The procedure for a second rank determinant is 843 

 844 
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  Z .        (1.112) 845 

 846 

For example the determinant  
1 2

1*4 2*3 2
3 4

    A . 847 

 Third rank determinants are defined 848 
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     ,    (1.113) 850 

 851 

where the 2 2  determinants are the cofactors of the elements they multply. The general expression for 852 

an n n  determinant is simplified by denoting the cofactor of zij by Zij, 853 

 854 
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    Z Z Z ,        (1.114) 855 

 856 

where a theorem that asserts the equivalence of expansions in terms of rows or columns is used without 857 

proof. Some properties of determinants are: 858 

 (i) detZ=detZ
t
. This is just a restatement that expansions across rows and columns are equivalent. 859 

 (ii) Exchanging two rows or two columns reverses the sign of the determinant. This implies 860 

that if two rows or columns are identical then the determinant is zero. 861 

 (iii)  If the elements in a row or column are multiplied by k , the determinant is multiplied by k . 862 

(iv) A determinant is unchanged if k  times the elements of one row (or column) are added to the 863 

corresponding elements of another row (or column). Extension of this result to multiple rows or 864 

columns, in combination with result (iii), yields the important result that a determinant is zero if 865 

two or more rows or columns are linear functions of other rows or columns. 866 

 A matrix is essentially a type of number that is expressed as a (most commonly two dimensional) 867 

array of numbers. An example of an m n  matrix is 868 

 869 
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n

n
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z z z

z z z

z z z

 
 
 
 
 
 

Z  ,         (1.115) 870 

 871 

where by convention the first integer m is the number of rows and the second integer n is the number of 872 

columns. Matrices can be added, subtracted, multiplied and divided. Addition and subtraction is defined 873 

by adding or subtracting the individual elements and is obviously meaningful only for matrices with the 874 

same values of m and n. Multiplication is defined in terms of the elements zmn of the product matrix Z 875 
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being expressed as a sum of products of the elements xmi and yin of the two matrix multiplicands X and 876 

Y: 877 

 878 

mn mi in

i

z x y   Z X Y .         (1.116) 879 

 880 

For example 
1 2 3 2 4

3 4 3 2 4

A B a b a b a b

C D c d c d c d

       
       

       
. Clearly the number of rows and columns 881 

in the first matrix must respectively equal the number of columns and rows in the second. Matrix 882 

multiplication is generally not commutative, i.e.   X Y Y X . For example 883 

1 2 2 2

3 4 3 4 3 4

a b a c b d A B

c d a c b d C D

       
       

       
. The transpose of a square n=m matrix t

Z  is defined 884 

by exchanging rows and columns, i.e. by a reflection through the principle diagonal (that which runs 885 

from the top left to bottom right). The unit matrix U is defined by all the principle diagonal elements umm 886 

being unity and all off-diagonal elements being zero. It is easily found that    U X X U X for all 887 

X. 888 

 An inverse matrix Z
–1

 defined by Z
–1

Z=ZZ
–1

=U is needed for matrix division and is given by 889 

 890 

 1
1 det

det

i j t

ij




 

  
  

Z
Z

Z
,  (1.117) 891 

 892 

where t

ijZ  is the transpose of the cofactor. The method is illustrated by the following table for the 893 

inverse of the matrix 
1 2

3 4

 
  
 

A : 894 

    i    j  1
i j

        t

ijZ    numerator 1

ij


A  895 

-------------------------------------------------------------- 896 

    1    1    +1      4        +4   −2 897 

    1    2    −1      2        −2   +1 898 

    2    1    −1      3        −3   +3/2 899 

    2    2    +1      1        +1   −1/2 900 

-------------------------------------------------------------- 901 

Thus the inverse matrix 
1

A  is 
2 1

3 / 2 1/ 2

  
 
  

. It is readily confirmed that AA
–1

=A
–1

A=U. Matrix 902 

inversion algorithms are included in most (all?) software packages. 903 

 Determinants provide a convenient method for solving N equations in N unknowns {xi}, 904 

 905 

1

, 1:
N

ji i j

i

A x C j N


  ,   (1.118) 906 
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 907 

where Aij and Cj are constants. The solutions for {xi} are obtained from Cramer’s Rule: 908 

 909 

11 1 1 11 1 1

1 1

11 1 1

1

... ... ... ... ... ...

det

... ... ...

n n

n n nn n n nn

i

i n

n ni nn

A C A A C A

A C A A C A
x

A A A

A A A

 
A

 .  (1.119) 910 

 911 

If detA=0 then by property (iv) above at least two of its rows are linearly related and there is therefore 912 

no unique solution. 913 

 914 

1.7 Jacobeans 915 

 Changing a single variable in an integral, from x to y for example, is accomplished using the 916 

derivative dx/dy: 917 

 918 

   
dx

f x dx f x y dy
dy

 
     

 
  .         (1.120) 919 

 920 

For a change in more than one variable in a multiple integral, {x,y} to {u,v} for example, the integral 921 

transformation 922 

 923 

     , , , ,x u v y u v dxdy f u v du dv           (1.121) 924 

 925 

requires that du  and dv  be expressed in terms of dx and dy using eq. (1.13):  926 

 927 

x x y y
dxdy du dv du dv

u v u v

              
            

             
 .      (1.122) 928 

 929 

For consistency with established results it is necessary to adopt the definitions dudu=dvdv=0,  930 

dudv=–dvdu, and 
2 2

/ / 0x y u x y v        . Equation (1.122) then becomes 931 

 932 

 

 

,
det

,

x x

x yu vx y x y
dxdy dudv

u v v u u vy y

u v

    
                    

                            
   
    

 ,   (1.123) 933 

 934 

and  935 
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 936 

     
 

 

,
, , , ,

,

x y
f x y dx dy f x u v y u v du dv

u v

 
       





 .     (1.124) 937 

 938 

The determinant in eq. (1.123) is called the Jacobean and is readily extended to any number of 939 

variables: 940 

 941 

 

 

1 1

1

1

1

1

...

... ...
det ... ... ...

... ...

...

n

i n

i n

n n

n

x x

v v
x x x

v v v
x x

v v

   
  

    
  

  
  

   
  

    

X

V
,       (1.125) 942 

 943 

where the variables {xi=1:n} and {vi=1:n} have been subsumed into the n-vectors X  and V  944 

respectively. The condition that  X V  can be found when  V X  is given is that the Jacobean 945 

determinant is nonzero. In this case the general expression for a change of variables is 946 

 947 

     1

1

...

...

n

n

x x d
f d f d f d

v v d

                 

 
 

X
X X X V V X V V

V
 .    (1.126) 948 

 949 

As a specific example of these formulae consider the transformation from Cartesian to spherical 950 

coordinates:  951 

 952 

 

 

 

, , sin cos ,

, , sin sin ,

, , cos ,

x r r

y r r

z r r

   

   

  







         (1.127) 953 

 954 

for which the Jacobean is 955 

 956 

2

sin cos cos cos sin sin

sin sin cos sin sin cos sin

cos sin 0

r r

r r r

r

     

      

 

 



,      (1.128) 957 

 958 

so that 959 

 960 

    2, , , , sinf x y z dxdy dz f r r dr d d         .      (1.129) 961 

 962 
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1.8 Vectors and Tensors 963 

1.8.1 Vectors 964 

 Vectors are quantities having both magnitude and direction, the latter being specified in terms of 965 

a set of coordinates (usually but not necessarily orthogonal) such as those specified in §1.2.7. In two 966 

dimensions the point (x,y)=(rcosφ, rsinφ) can be interpreted as a vector that connects the origin to the 967 

point: its magnitude is r and its direction is defined by the angle φ relative to the x-axis: φ=arctan(y/x). A 968 

vector in n dimensions requires n components for its specification that are normally written as a  1 n  969 

matrix (column vector) or  1n  matrix (row vector). The magnitude or amplitude r is a single number 970 

and is a scalar. To distinguish vectors and scalars vectors are written here in bold face with an arrow: a 971 

vector A  has a magnitude A. Addition of two vectors with components (x1,y1,z1) and (x2,y2,z2) is 972 

defined as (x1+x2, y1+y2, z1+z2), corresponding to placing the origin of the added vector at the terminus 973 

of the original and joining the origin of the first to the end of the second (“nose to tail”). Multiplication 974 

of a vector by a scalar yields a vector in the same direction with only the magnitude multiplied. For 975 

example the direction of the diagonal of a cube relative to the sides of a cube is independent of the size 976 

of the cube. 977 

 It is convenient to specify vectors in terms of unit length vectors in the direction of orthogonal 978 

Cartesian coordinates denoted by i , ĵ  and k . A vector A  with components Ax, Ay, and Az is then 979 

written as  980 

 981 

x y zA A A  A i j k .          (1.130) 982 

 983 

The direction of the k vector relative to the i  and ĵ  vectors is determined by the same right hand rule 984 

convention as that for the z-axis relative to the x and y axes (§1.2.7). Orthogonality of these unit vectors 985 

is indicated by the relations 986 

 987 

0     i i j j k k ,          (1.131) 988 

 989 

and 990 

 991 

    

    

    

i j j i k

j k k j i

k i i k j

 .          (1.132) 992 

 993 

where   denotes the vector or cross product defined below in §1.135. 994 

 The components of a vector in a nonorthogonal coordinate system can be specified in two ways: 995 

(i) a projection onto an axis and (ii) partial vectors that lie along the axis directions. Both specifications 996 

are unique, but because they transform differently with respect to linear homogeneous transformations 997 

of the coordinate systems they are given different names: the partial vectors are contravariant vectors 998 

and the projections are covariant vectors (also see next section on tensors). For orthogonal coordinate 999 

systems there is no distinction between the two types of vectors. A useful aide memoire is that 1000 

contravariant vectors transform in the same way as the coordinate axes. 1001 

 There are two forms of vector multiplication. The scalar product is defined as the product of the 1002 

magnitudes and the cosine of the angle θ between the vectors: 1003 
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 1004 

cosAB A B  .           (1.133) 1005 

 1006 

This product is denoted by a dot and is often referred to as the dot product. Since Bcosθ is the projection 1007 

of the vector B  onto the direction of A  and vice versa the scalar product can be regarded as the 1008 

product of the magnitude of one vector and the projection of the other upon it. If θ=π/2 the scalar 1009 

product is zero even if A and/or B are nonzero, and the scalar product changes sign as θ increases 1010 

through π/2. If A  and B  are defined by eq. (1.130), then 1011 

 1012 

x x y y z zA B A B A B  A B  .         (1.134) 1013 

 1014 

 The vector product, denoted by A B  and often referred to as the cross product, is defined by a 1015 

vector of magnitude ABsinθ that is perpendicular to the plane defined by A  and B . The sign of  1016 

 C A B  is again defined by the right hand rule for right handed coordinates: when viewed along C  1017 

the shorter rotation from A  to B  is clockwise or, analogous to the definition of a right hand coordinate 1018 

system, when the index finger of the right hand is bent from A  to B  the thumb points in the direction 1019 

of C . Reversal of the order of multiplication of A  and B  therefore changes the sign of C . The 1020 

definition of the cross product is  1021 

 1022 

     

ˆ ˆ ˆ

ˆ ˆ ˆ
x y z y z z y x z z x x y y x

x y z

A A A A B A B A B A B A B A B

B B B

       

i j k

A B i j k .  (1.135) 1023 

 1024 

Thus changing the order of multiplication corresponds to exchanging two rows of the determinant, 1025 

thereby reversing the sign of the determinant as required (§1.6). 1026 

 Combining scalar and vector products yields: 1027 

 1028 

     
x y z

x y z

x y z

A A A

B B B

C C C

     A B C A B C B C A  ,      (1.136) 1029 

 1030 

that is the volume enclosed by the vectors A , B , C . Also,  1031 

 1032 

                         A B C A C B A B C A B C C A B C A B C B A   (1.137) 1033 

 1034 

and 1035 

 1036 

            A B C D A C B D B C A D .      (1.138) 1037 

 1038 

The contravariant unit vectors for nonorthogonal axes (corresponding to i , ĵ , k̂ ) are often written as 1039 
1

ê , 2
ê  and 3

ê  (up to ˆ n
e  for n dimensions), and the reciprocal unit vectors ˆ

ne  are defined (in three 1040 

dimensions) by 1041 
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 1042 
3 1 1 2

2 31 2 3 1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ; ;

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

  
  

     

2 3

1

e e e e e e
e e e

e e e e e e e e e
.       (1.139) 1043 

 1044 

Note that  ˆ ˆ 1 1,2,3
i

i
i e e . The reciprocal lattice vectors used in solid state physics are examples of 1045 

covariant vectors corresponding to contravariant real lattice vectors. 1046 

The contravariant components A
i
 of a vector A  are then defined by 1047 

 1048 

ˆi i

i

AA e  ,           (1.140) 1049 

 1050 

and the covariant components Ai are 1051 

 1052 

ˆ
i i

i

AA e .           (1.141) 1053 

 1054 

 The area and orientation of an infinitesimal plane segment is defined by a differential area vector 1055 

da  that is perpendicular to the plane. The sign of da  for a closed surface is defined to be positive when 1056 

it points outwards from the surface. For open surfaces the direction of da  is defined by convention and 1057 

must be separately specified. 1058 

 If  ia  define the area vectors of the faces of a closed polyhedron it can be shown that 1059 

 1060 

0i

i

a .            (1.142) 1061 

 1062 

This result is obvious for a cube and an octahedron but it is instructive to demonstrate it explicitly for a 1063 

tetrahedron. Let A , B  and C  define the edges of a tetrahedron that radiate out from a vertex. The 1064 

three faces defined by these edges are A B , B C , and C A . The three edges forming the faces 1065 

opposite the vertex are B A , C B , and A C  and the face enclosed by these edges is 1066 

      A A CB       A C C B . Expansion of either of the latter yields          B A C B A C  1067 

because   A A    B B    0 C C  and this exactly cancels the contributions from the other three 1068 

faces. 1069 

 Differentiation of vectors with respect to scalars follows the same rules as differentiation of 1070 

scalars. For example, 1071 

 1072 

 d d d

dw dw dw

   
     

   

A B B A
A B          (1.143) 1073 

 1074 

and 1075 

 1076 
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 d d d d d

dw dw dw dw dw

       
             

      

A B B A B A
A B A B  .     (1.144) 1077 

 1078 

The derivatives of a scalar (e.g. w) in the directions of i , ĵ , and k̂  yield the gradient vector grad(w) or 1079 

w , defined as  1080 

 1081 

ˆ ˆgrad ˆ w w w
w w

x y z

      
        

      
j ki ,         (1.145) 1082 

 1083 

where 1084 

 1085 

x y z

  
   

  
j ki            (1.146) 1086 

 1087 

is termed del or nabla and the products of the operators / ix   with w are interpreted as / iw x  . 1088 

 The scalar product of  with a vector A  is the divergence, divA  or  A : 1089 

 1090 

yx z
AA A

x y z

 
   

  

    
    
    

A .        (1.147) 1091 

 1092 

 The scalar product of   with itself is the Laplacian  1093 

 1094 
2 2 2

2

2 2 2
x y z

  
     

  
.         (1.148) 1095 

 1096 

 The differential of an arbitrary displacement ds  is 1097 

 1098 

d dx dy dz  s i j k .          (1.149) 1099 

 1100 

Recalling the differential of a scalar function [eq. (1.13)], 1101 

 1102 

w w w
dw dx dy dz

x y z

      
      

      
,        (1.150) 1103 

 1104 

it follows from eqs. (1.145) and (1.149) that dw can be defined as the scalar product of ds  and w : 1105 

 1106 

dw d w s .            (1.151) 1107 

 1108 

The two dimensional surface defined by constant w is 1109 

 1110 

00dw d w  s ,           (1.152) 1111 

 1112 
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where 
0ds  clearly lies within the surface. Since 

0ds  and w  are in general not zero w  must be 1113 

perpendicular to 
0ds , i.e. normal to the surface at that point. Conversely dw is greatest when ds  and 1114 

w  lie in the same direction [eq. (1.151)] so that w  defines the direction of greatest change in w and 1115 

this maximum has the value dw/ds. 1116 

 The vector product of   with A  is the curl of A : 1117 

 1118 

ˆ ˆ ˆ

curl

x y z

x y z

A A A

  
  

  

i j k

A A .         (1.153) 1119 

 1120 

Straightforward (albeit tedious) algebraic manipulation of this definitions reveals that 1121 

 1122 

  0  A  ,           (1.154) 1123 

  0  A  ,           (1.155) 1124 

 1125 

and 1126 

 1127 

  2   A A A .         (1.156) 1128 

 As a physical example of some of these formulae consider an electrical current density J  that 1129 

represents the amount of electric charge flowing per second per unit area through a closed surface s  1130 

enclosing a volume V. Then the charge per second (current) flowing through an area ds  (not necessarily 1131 

perpendicular to J ) is given by the scalar product dJ S . The currents flowing into and out of V have 1132 

opposite signs so that if V contains no sources or sinks of charge then the surface integral is zero, i.e. 1133 

0d  J s . If sources or sinks of charge exist within the volume then the integral yields a measure of 1134 

the charge within the volume. In particular the cumulative current can be shown to be dV J  and 1135 

Gauss’s theorem results: 1136 

 1137 

d dV dxdydz      J S J J .       (1.157) 1138 

 1139 

Two other useful integral theorems are 1140 

Green’s Theorem in the Plane:  1141 

 1142 

 
C

Q P
Pdx Qdy

x y

  
   

  





 ,  (1.158) 1143 

 1144 

where P and Q are functions of x and y within an area A. The left hand side of eq. (1.158) is a line 1145 

integral along a closed contour C that encloses the area A and the right hand side is a double integral 1146 

over the enclosed area (see §1.9.3.2 for details about contour integrals). 1147 
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 1148 

Stokes' Theorem 1149 

 This theorem equates a surface integral of a vector V  over an open three dimensional surface to 1150 

a line integral of the vector around a curve that defines the edges of the open surface. Let the vector be 1151 

V , the line element be ds , and the vector area be ˆAA n  where n̂  is the unit vector perpendicular to 1152 

the plane of the surface. Stoke's theorem is then given by 1153 

 1154 

    ˆ

A A

d d dA        V s V A V n .       (1.159) 1155 

 1156 

A simple example illustrates the usefulness of this theorem. Consider a butterfly net surface that has a 1157 

roughly conical mesh attached to a hoop (not necessarily circular). Stokes' theorem asserts that for the 1158 

vector field V  (for example air passing through the net) the area vector integral of the mesh equals the 1159 

line integral around the hoop regardless of the shape of the mesh. Thus a boundary condition on the 1160 

function V  is all that is needed to determine the surface integral for any surface whatsoever. 1161 

 1162 

1.8.2 Tensors [NEEDS IMPROVEMENT] 1163 

 A tensor is a generalization of a vector: it is a multidimensional object that like a vector is 1164 

independent of the coordinate system used to describe it. Consider two points U and V that are 1165 

infinitesimally close and whose coordinates in two N-dimensional coordinate systems {x} and {x'} are 1166 

 ,n n nx x dx and  ' , ' 'n n nx x dx  (n=1:N). The infinitesimal distance UV is dx
n
 in the first coordinate 1167 

system and dx'
n
 in the second, with 1168 

 1169 

1

'
'

mN
m n

n
n

x
dx dx

x

 
  

 
 .          (1.160) 1170 

 1171 

The distance UV has an objective existence that is independent of the coordinate system (as opposed to 1172 

the positions of the points U and V themselves), and is the prototype of a second rank tensor with 1173 

contravariant components: 1174 

 1175 

1 1

' ' ' 'm n m nN N
mn rs rs

r s r s
r s

x x x x
T T T

x x x x 

        
      

        
 ,      (1.161) 1176 

 1177 

where the second equality is given to illustrate the summation convention (introduced by Einstein) that 1178 

summation over repeated indices in a single term (here r and s) is to be understood. For pedalogical 1179 

clarity both the explicit summation and the summation convention in tensor expressions are used here. 1180 

The contravariant character is indicated by placing indices as superscripts and should not be confused 1181 

with exponents. The quantity T
mn

 in eq. (1.161) is an example of a second rank tensor; vectors are 1182 

therefore examples of first rank tensors. Extensions of eq. (1.161) to higher rank tensors are self evident 1183 

but rarely if ever occur in relaxation phenomenology. 1184 

 The contraction of any tensor to a lower rank object with eventually no indices gives an 1185 

invariant I whose value is independent of the coordinate system (see below for details about 1186 

contraction). Differentiation of an invariant I gives 1187 

 1188 
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' '

n

m n m

I I x

x x x

    
   

    
.          (1.162) 1189 

 1190 

This transformation is similar to that eq. (1.160) but with the important difference that the indices are 1191 

reversed on the right hand side. The partial derivative of an invariant exhibited in eq. (1.162) is the 1192 

prototype of a covariant tensor 1193 

 1194 

1 1

'
' ' ' '

r s r sN N
mn

rs rsm n m n
r s

x x x x
T T T

x x x x 

        
      

        
 ,      (1.163) 1195 

 1196 

Covariant quantities are indicated by subscripted indices. However, for orthogonal coordinate systems 1197 

there is no distinction between conravariant and covariant tensors. 1198 

 Mixed tensors are contravariant with respect to some indices and covariant with respect to 1199 

others, for example 
mn

rsT . Summation over a common contravariant and covariant index of a mixed 1200 

tensor is termed contraction and produces a tensor of rank two less then the original. For example, 1201 

contraction of a third rank mixed tensor produces a first rank tensor, i.e. a vector: 1202 

 1203 

n n

r rn rn

n

T T T  .           (1.164) 1204 

 1205 

 The square of the infinitesimal distance between two points in any coordinate syatem is given by 1206 

a generalization of the three dimensional Pythagorean expression      
2 2 2

2 1 2 2ds dx dx dx    to the 1207 

expression 1208 

 1209 

2 m n m n

mn mn

m n

ds g dx dx g dx dx  ,        (1.165) 1210 

 1211 

where gmn are the covariant components of the metric tensor. As noted above infinitesimal distances 1212 

between points have an objective existence (i.e. ds
2
 is an invariant) and the gmn are measures of the 1213 

geometry of the space within which the adjacent points are embedded. Since multiplication of m ndx dx  is 1214 

commutative the metric tensor is symmetric so that gmn=gnm. Contravariant components of the metric 1215 

tensor are formed by 1216 

 1217 

ms ms s

mr mr r

m

g g g g   ,          (1.166) 1218 

 1219 

where 
s

r  is the Kronecker delta defined by 1220 

 1221 

 

 

1

0

s

r

r s

r s



 


.          (1.167) 1222 

 1223 

From the rules of expanding a determinant [eq. (1.114)] it can be shown that  1224 
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 1225 
mn

mng
g


  ,           (1.168) 1226 

 1227 

where g  is the determinant of the matrix  mng  and mn  is the cofactor of mng  in this determinant. 1228 

Contravariant and covariant components of a tensor can be computed from one another using the metric 1229 

tensor. Example: 1230 

 1231 
n

m mnR g S  .            (1.169) 1232 

 1233 

Thus any tensor representing a physical quantity can be expressed in contravariant, covariant or mixed 1234 

form. 1235 

 For curvilinear coordinates the gik and g
ik
 are functions of x

i 
or xi. For orthogonal coordinate 1236 

systems in n dimensions there are n nonzero constant metric coefficients all of which occur as diagonal 1237 

elements: hii=(gii)
1/2

. The angle θ between two vectors A  and B  is obtained from 1238 

 1239 

cos m n

mng A A  ,          (1.170) 1240 

 1241 

so that θ=π/2 for orthogonal vectors [cosθ=0]. As examples of how the gi depend on the coordinate 1242 

system in order that ds
2
 be invariant, consider the three coordinate systems defined in §1.2.7: Cartesian 1243 

{x
i
}; cylindrical [eq. (1.26)]; and spherical [eq. (1.27)]. 1244 

 1245 

Cartesian:  1246 

     
2 2 2

2 1 2 3

1 2 3 1ds dx dx dx g g g        ,      (1.171) 1247 

 1248 

Cylindrical: 1249 

     
2 2 22

1 3 21;ds dr rd dz g g g r        ,      (1.172) 1250 

 1251 

Spherical: 1252 

 1253 

     
2 2 22

1 2 3sin 1; 2; sinds dr rd r d g g g r           .    (1.173) 1254 

 1255 

 Vector operations can be generalized to tensor operations. Covariant differentiation of a tensor 1256 

with respect to a k
th

 variable is defined as  1257 

 1258 

 
...

;... ... ... ...

;

z

ij kz z z z

ij k k ij ik j jk jk

T
T

x


       


 ,       (1.174) 1259 

 1260 

[cf. eq. (1.162) for differentiation of an invariant to produce a prototypical covariant vector]. The 1261 

quantities 1262 

 1263 
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1

2

j jki i i k
jk kj k j

g gg
g

x x x

  
      

   
        (1.175) 1264 

 1265 

are the Christoffel symbols but are not tensors because they do not transform with respect to changes in 1266 

coordinates in the correct manner [eqs. (1.161) and (1.163)]. For orthogonal coordinate systems the jk  1267 

are all zero because all the gmn (or the equivalent g
mn

) are constant, but for curvilinear coordinates the 1268 

computations of the jk  can be tedious. Covariant differentiation with respect to a variable with a 1269 

contravariant index is often denoted by a semicolon before the (covariant) index as in eq. (1.174), but 1270 

there are other conventions for this as well. The generalization of the vector product is the outer product 1271 

whose components are defined by considering all possible products of the components of the 1272 

multiplicands. Example: 1273 

 1274 
i i

jk j kC A B .           (1.176) 1275 

 1276 

The scalar product of two vectors is generalized to the inner product of two tensors, defined by the outer 1277 

multiplication of two tensors and contraction with respect to indices from different factors: 1278 

 1279 

k k

i i k i k

k

C A B A B  .          (1.177) 1280 

 1281 

 The tensor generalization of the divergence of a contravariant vector [eq. (1.147)] is  1282 

 1283 
1/2

1/2

1
r

r
r

g A
D

g x

     
 
 

 .          (1.178) 1284 

 1285 

Note that the g
1/2

 do not cancel for curvilinear coordinates because gmn are then functions of x
r
. 1286 

 The elements of the tensor generalization of the curl of a covariant vector [eq. (1.153)] are  1287 

 1288 

m n
mn n m

A A
B

x x

 
 
 

 .          (1.179) 1289 

 1290 

 The trace of a tensor, defined as the sum of its diagonal elements, is an invariant. Its importance 1291 

is closely allied to the ubiquity of eigenvalue problems. Multiplication of a vector A  by a second-order 1292 

tensor T  will give a second vector B  that will in general differ from A  in both magnitude and 1293 

direction. In many physical situations it is desirable that A  and B  have the same direction and differ 1294 

only in magnitude. This requirement is expressed by the eigenvalue equations 1295 

 1296 

 T A A            (1.180) 1297 

 1298 

or  1299 

 1300 

ik k i

k

T A A  ,           (1.181) 1301 
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 1302 

where {λ} are the eigenvalues and A  is the eigenvector. If the vector A  conforms to eq. (1.180) its 1303 

direction is referred to as the principal direction of T. The values of λ are obtained by treating eqs. 1304 

(1.181) as simultaneous equations and solving them using Cramer’s rule. In two dimensions: 1305 

 1306 

11 12

21 22

0
T T

T T









           (1.182) 1307 

 1308 

so that 1309 

 1310 

   2

11 22 11 22 12 21 0T T T T T T              (1.183) 1311 

 1312 

and 1313 

 1314 

 

1/2
2

11 22 11 22
11 22 21 12

2 2

T T T T
T T T T

   
     

   

.       (1.184) 1315 

 1316 

In the coordinate system defined by the two principal axes, the tensor T takes the form 1317 

 1318 

1

2

0

0
T




 .           (1.185) 1319 

 1320 

The values of λ are independent of the choice of coordinate system (since they are scalars) and their 1321 

coefficients in eq. (1.183) must therefore also be invariant. In particular, the coefficient of λ is the 1322 

invariant trace 11 22ii

i

T T T  . 1323 

1.9 Complex Numbers 1324 

 This is the most important section in this book. Several books on complex numbers are helpful. 1325 

An excellent introduction is Kyrala's "Applied Functions of a Complex Variable" [10] (long out of print 1326 

and not (yet?) a Dover reprint but available used online), that has many excellent worked examples. The 1327 

definitive texts by Copson [4] and Titchmarsh [11,12] are recommended for more complete and rigorous 1328 

treatments. The introductory sections of the book by Chantry [2] are also excellent, as are the accounts 1329 

of relaxation phenomenological uses of complex numbers in McCrum, Read and Williams [13] and 1330 

Ferry [14], but be aware that both of these use the electrical engineering phase convention (Chantry 1331 

gives a superb account of phase conventions). The book by Ferry is much more detailed but also be 1332 

aware that the distributions of relaxation and retardation times in it are usually not normalized (for 1333 

sensible reasons, see Chapter 3). 1334 

1.9.1 Definitions 1335 

 A complex number, z, is a number pair whose components are termed real (x) and imaginary (y): 1336 

 1337 

 
1/2

1z x iy i     .          (1.186) 1338 

 1339 
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Thus, for example, 1340 

 1341 

 2 2 2 2z x y ixy   .          (1.187) 1342 

 1343 

Two complex numbers z1 and z2 are equal if, and only if, their real and imaginary components are both 1344 

equal. The closely related numbers (and corresponding functions) obtained by replacing i with –i are 1345 

referred to as complex conjugates and are denoted by an asterisk in the mathematical (and quantum 1346 

mechanical) literature. In the physical literature of relaxation phenomenology the asterisk is usually used 1347 

to define functions in the complex frequency domain [e.g. f*(iω)], to distinguish them from the 1348 

corresponding time domain functions f(t), and this nomenclature is followed here. Complex conjugation 1349 

is denoted in this book by the superscripted dagger † : 1350 

 1351 
†z x iy  .            (1.188) 1352 

 1353 

The reciprocal of z* is then 1354 

 1355 
† †

22 2 2 2

1 1

*

x iy z z

z x iy x y x y z


   

  
,        (1.189) 1356 

 1357 

where z  is the (always positive) complex modulus equal to the real number defined by 1358 

 
1/2

†*z z z  . The mathematical term "modulus" should not be confused with that used in the 1359 

relaxation literature (for example shear modulus = shear stress/shear strain ). Confusion is averted by 1360 

preceding the word "modulus" in relaxation applications with the appropriate adjective, e.g. "shear 1361 

modulus" or "electric modulus", and in mathematical material by "complex modulus". 1362 

 1363 

1.9.2 Complex Functions 1364 

 A complex function of one or more variables is separable into real and imaginary components: 1365 

 1366 

       * * , , ,f z f x y u x y iv x y   .        (1.190) 1367 

 1368 

It is customary in the physical literature to denote the real component of a complex function with a 1369 

prime and the imaginary component with a double prime so that    , ' ,u x y f x y  and 1370 

   , " ,v x y f x y : 1371 

 1372 

     * ' , " ,f z f x y if x y  .         (1.191) 1373 

 1374 

Thus for f*(z)=1/g*(z) [cf. eq. (1.189)] 1375 

 1376 
†

22 2

1 ' "
' "

' " ' "

g ig g
f if

g ig g g g


   

 
,        (1.192) 1377 

 1378 
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and 1379 

 1380 
†

22 2

1 ' "
' "

' " ' "

f if f
g ig

f if f f f


   

 
        (1.193) 1381 

 1382 

so that 1383 

 1384 

2 2

2 2

'
' ,

' "

"
" .

' "

f
g

f f

f
g

f f









           (1.194) 1385 

 1386 

 The real and imaginary components of a complex function are also commonly denoted by Re 1387 

and Im respectively:  ' Re ( )f f z  and  " Im ( )f f z . 1388 

 Complex functions can be expressed as an infinite sum of powers of z or (z–a) (a=constant), that 1389 

must of course converge in order to be useful. Convergence may be restricted to values of z  less than 1390 

some number R (often unity). Because the conditions for convergence are defined in terms of 1391 

differentials [10,11], which for analytical functions depend only on r z  and not on the phase angle θ 1392 

[see below], the real number R is referred to as the radius of convergence. Details about the conditions 1393 

needed for convergence and associated issues are found in mathematics texts. The most general series 1394 

expansion is the Laurent series 1395 

 1396 

   
n

n

n

n

f z f z a




  ,          (1.195) 1397 

 1398 

where fn and a are in general complex and n is a real integer. If fn=0 for n<0 the series is a Taylor series:  1399 

 1400 

   
0

n
n

n

n

f z f z a




             (1.196) 1401 

 1402 

and if in addition a=0 the series is a MacLaurin series: 1403 

 1404 

 
0

n
n

n

n

f z f z




   .           (1.197) 1405 

 1406 

The coefficients fn are defined by the complex derivatives of f*(z): 1407 

 1408 

1

!

n

n n

d f
f

n dz

 
  

 
,           (1.198) 1409 

 1410 

so that the Taylor series expansion becomes 1411 

 1412 
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0

1
*

!

nn
n

n
n

d f
f z z a

n dz





 
  

 
 .         (1.199) 1413 

 1414 

A function that is central to the application of complex numbers to relaxation phenomena is the complex 1415 

exponential, 1416 

 1417 

   

   

     

exp * exp

exp exp

exp cos sin ,

z x iy

x iy

x y i y

 



   

        (1.200) 1418 

 1419 

where the Euler relation 1420 

 1421 

     exp cos siniy y i y           (1.201) 1422 

 1423 

has been invoked. The Euler relation implies that the cosine of the real variable y can be written as 1424 

 1425 

   cos Re expy iy              (1.202) 1426 

 1427 

and the sine function as 1428 

 1429 

   sin Re expy i iy    .          (1.203) 1430 

 1431 

Since the sine and cosine functions differ only by the phase angle π/2 eqs. (1.202) and (1.203) indicate 1432 

that i shifts the phase angle by π/2. The usefulness of complex numbers in describing physical properties 1433 

measured with sinusoidally varying excitations derives from this property of i. 1434 

 Since multiplication of z* by (–1) turns +x into –x and y into –y a rotation of ±π/2 can be 1435 

interpreted as multiplication by i=±(–1)
1/2

. By convention positive angles are defined by 1436 

counterclockwise rotation so that multiplication by i produces +x→+y and +y→–x. The complex number 1437 

z=x+iy can be regarded as a point in a Cartesian (x,iy) plane, with the x axis representing the real 1438 

component and the y axis the imaginary component. The (x,iy) plane is referred to as the complex plane. 1439 

The Cartesian coordinates of z* in this plane can also be expressed in terms of the circular coordinates r, 1440 

that is the (always positive) radius of the circle centered at the origin and passing through the point, and 1441 

the phase angle θ between the +x axis and the radial line joining the point (x,iy) with the origin: 1442 

 1443 

 expz r i ,           (1.204) 1444 

 1445 

so that 1446 

 1447 

cosx r              (1.205) 1448 

 1449 

and 1450 

 1451 

siny r  .           (1.206) 1452 
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 1453 

[cf. eqs. (1.26)]. As noted the radius r is always real and positive: 1454 

 1455 

r z .            (1.207) 1456 

 1457 

The limit z→±∞ is defined by r→∞ independent of θ and is therefore unique. 1458 

 The inverse exponential is the complex logarithm Ln(z*), that is multi-valued since trigonometric 1459 

functions are periodic with period 2π: 1460 

 1461 

   * exp exp 2z x iy r i r i n           1462 

     Ln * ln 2z r i n    .          (1.208) 1463 

 1464 

The principle logarithm is defined by n=0 and        and is usually implied by the term 1465 

"logarithm"; it is indicated by a lower case Ln→ln so that ln(z)=ln(r)+iy. From x=cosθ and y=sinθ 1466 

(r=1) two special cases are ln(i)=iπ/2 and ln(–1)=iπ. 1467 

 The Cartesian construction provides a simple proof of the Euler relation since the function 1468 

f=cosθ+isinθ is unity for θ=0 and satisfies  1469 

 1470 

 sin cos cos sin
df

i i i if
d

   

      ,       (1.209) 1471 

 1472 

that is the differential equation for the exponential function f = exp(iθ) since only the exponential 1473 

function is proportional to its derivative and is unity at the origin. 1474 

 Rotation by / 2  can also be described by two equivalent 2 2  matrices: 1475 

 1476 

0 1
,

1 0

 
 
 

            (1.210) 1477 

 1478 

0 1
,

1 0

 
 
 

            (1.211) 1479 

 1480 

that describe clockwise or counter-clockwise rotations respectively by π/2 when pre-multiplying a vector 1481 

(the direction of rotation reverses when the matrices post-multipy the vector). The matrices of eq. 1482 

(1.210) and (1.211) are therefore matrix equivalents of ±i. Their product is unity, corresponding to 1483 

   1i i    : 1484 

 1485 

0 1 0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 0 0 1

             
            

             
’     (1.212) 1486 

 1487 

and their squares are also easily shown to be (–1). The complex number z=x+iy can then be expressed as 1488 

 1489 

x y
z

y x

  
  

  
,          (1.213) 1490 
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 1491 

and eq. (1.187) becomes 1492 

 1493 
2 2

2 2

2

2

x y x y x y xy
z

y x y x xy x y

         
       

          
.       (1.214) 1494 

 1495 

  1496 

 The Euler relation enables simple derivations of trigonometric identities. For example: 1497 

 1498 

     

   

       

               

exp cos sin

exp exp

cos sin cos sin

cos cos sin sin cos sin sin cos

i x y x y i x y

ix iy

x i x y i y

x y x y i x y x y

      



        

         

. (1.215) 1499 

 1500 

Equating the real and imaginary components then yields the relations 1501 

 1502 

         cos cos cos sin sinx y x y x y          (1.216) 1503 

 1504 

and 1505 

 1506 

         sin sin cos sin cosx y x y y x   .       (1.217) 1507 

 1508 

 The Euler relation eq. (1.201) implies that trigonometric (circular) functions can be expressed in 1509 

terms of complex exponentials. Changing the variable y to the angle (in radians!) θ then reveals that 1510 

 1511 

   exp exp
sin

2

i i

i

 


 
          (1.218) 1512 

 1513 

and 1514 

 1515 

   exp exp
cos

2

i i 


 
 .         (1.219) 1516 

 1517 

The circular functions are so named because the parametric equations x=Rcosθ and y=Rsinθ generate 1518 

the equation of a circle, x
2
+y

2
=R

2
. The symmetry properties sin(–θ) = –sinθ and cos(–θ) = cosθ are 1519 

evident from these relations. 1520 

 Equations (1.218) and (1.219) also provide a convenient introduction to the hyperbolic functions, 1521 

denoted by adding an "h" to the trigonometric functions, that are defined by replacing iθ with θ: 1522 

 1523 

   exp exp
sinh

2

 


 
  ,         (1.220) 1524 
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   exp exp
cosh

2

 


 
  .          (1.221) 1525 

 1526 

so that 1527 

 1528 

   cos coshi   ,          (1.222) 1529 

   sin sinhi i   ,           (1.223) 1530 

   tan tanhi i   ,           (1.224) 1531 

   2 2sinh cosh 1    .          (1.225) 1532 

 1533 

 For complex arguments z=x+iy: 1534 

 1535 

         sin sin cosh cos sinhz x y i x y         (1.226) 1536 

 1537 

and 1538 

 1539 

         cos cos cosh sin sinhz x y i x y  ,       (1.227) 1540 

 1541 

The functions are named hyperbolic because the parametric equations x=kcosh(θ) and y=ksinh(θ) 1542 

generate the hyperbolic equation x
2
–y

2
 = k

2
. 1543 

 The inverse hyperbolic functions are multi-valued because of the multi-valuedness of the 1544 

complex logarithm: 1545 

 1546 

     
1/2

Arcsinh 1 arcsinhz z n i    ,        (1.228) 1547 

   Arccosh arccosh 2z z n i   ,        (1.229) 1548 

   Arctanh arctanhz z n i   ,         (1.230) 1549 

 1550 

in which n is a real integer. It is customary to use uppercase first letters to denote the full multi-valued 1551 

function and lowercase first letters to denote the principle values for which n=0. For real arguments the 1552 

principle functions have the logarithmic forms 1553 

 1554 

   
1/2

2arcsinh ln 1x x x   
  

 ,         (1.231) 1555 

   
1/2

2arccosh ln 1x x x   
  

 ,  1x         (1.232) 1556 

 
1/2

1
arctanh ln

1

x
x

x

 
 
 





,   20 1x        (1.233) 1557 

 
1/2

2

1 1
arcsech ln 1x

x x

  
    

   
 ,  0 1x        (1.234) 1558 
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1/2

2

1 1
arccosech ln 1x

x x

  
    

   
 ,  0x        (1.235) 1559 

 
1/2

1
arccoth ln

1

x
x

x

 
 
 





.   2 1x         (1.236) 1560 

 1561 

1.9.3 Analytical Functions 1562 

 Of the large number of possible functions of a complex variable only those known as analytical 1563 

functions are useful for describing relaxation phenomena (and all other physical phenomena for that 1564 

matter because they ensure causality, see below). They are defined as being uniquely differentiable, the 1565 

latter meaning that the derivatives are continuous and that (importantly) differentiation with respect to z 1566 

does not depend on the direction of differentiation in the complex plane [10,11]. Thus differentiation of 1567 

an analytical function      * , ,f z u x y iv x y   parallel to the x-axis / x   produces the same result as 1568 

differentiation parallel to the y-axis / y  , resulting in the real and imaginary parts of an analytical 1569 

function being related to one another, as discussed next. 1570 

 Quaternions are a mathematically interesting generalization of complex numbers (although 1571 

rarely (if ever) used in relaxation phenomenology) that are characterized by a real component and three 1572 

“imaginary” numbers I, J, K defined by:,  1573 

 1574 
2 2 2 1,

,

,

.

I J K

I JK KJ

J KI IK

K IJ JI

   

  

  

  

          (1.237) 1575 

 1576 

A quaternion is then given by x0+Ix1+Jx2+Kx3 and has as its conjugate x0–Ix1–Jx2–Kx3. Quaternions can 1577 

also be expressed as 2x2 matrices: 1578 

 1579 

0 1
,

1 0

0
,

0

0
.

0

I

i
J

i

i
K

i

 
  

 

 
  

 

 
  

 

           (1.238) 1580 

 1581 

They are used to describe rotations in three dimensions. Their noncommuting properties exhibited in eq. 1582 

(1.237) reflect the fact that changing the order of rotation axes in three dimensional space results in a 1583 

different final direction. 1584 

 1585 

 1586 

1.9.3.1 Cauchy Riemann Conditions  1587 

 The relationship between the real and imaginary components of an analytical function is given 1588 

by the Cauchy-Riemann conditions, obtained from forcing the differential ratio 1589 
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0

lim /f z f z


 


     to be independent of the direction in the complex plane from which δ=α+iβ 1590 

approaches zero. It is instructive to derive these conditions by equating the limits α(β=0)→0 and 1591 

β(α=0)→0. These two derivatives are  1592 

 1593 

       
0

, , , ,
lim

u x y iv x y u x y iv x ydf u v
i

dx x x

 



       
   

  
    (1.239) 1594 

 1595 

and 1596 

 1597 

       

       

0

0

, , , ,
lim

, , , ,
lim

u x y iv x y u x y iv x ydf

dy i

iu x y v x y iu x y v x y v u
i

y y





 



 







     
  

 

        
   

  

    (1.240) 1598 

 1599 

Equating the real and imaginary parts of eqs. (1.239) and (1.240) produces the Cauchy-Riemann 1600 

conditions 1601 

 1602 

u v

x y

 


 
            (1.241) 1603 

 1604 

and 1605 

 1606 

u v

y x

 
 

 
.           (1.242) 1607 

 1608 

The functions u and v are harmonic because they obey the Laplace equations  2 2 0x y u    and 1609 

 2 2 0x y v   . 1610 

 Functions that are analytical except for isolated singularities (aka poles) where the functions are 1611 

infinite are also useful in relaxation phenomenology. For example, a singularity at the origin 1612 

corresponds to a pathology at zero frequency, which although immeasurable by ac techniques will 1613 

nevertheless influence the function at low frequencies. The word “analytical” is often used incorrectly in 1614 

the physical literature to denote a function that does not have to be evaluated numerically. We refer to 1615 

such functions as closed form functions in this book. Some closed form analytic functions have not yet 1616 

been given specific names [w(z) in eq. (1.36) for example]. 1617 

 1618 

1.9.3.2 Complex Contour Integration and Cauchy Formulae 1619 

 Contour integration refers to an integral not with respect to a coodinate but with respect to the 1620 

distance along a contour that traverses the complex plane. The value of a complex contour integral of an 1621 

analytical function is independent of the contour. Thus the integral for a closed contour is zero and the 1622 

Cauchy Theorem results: 1623 

 1624 

  0f z dz  .           (1.243) 1625 
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 1626 

 If the contour of integration passes through a singularity the integral may still exist (i.e. be finite) 1627 

but must be evaluated as a Cauchy principle value, which is denoted by P in front of the integral (often 1628 

omitted and must be assumed if necessary). For an integrand with a singularity at the origin, for 1629 

example, 1630 

 1631 

     
0

lim

a a

a a

P f z dz f z dz f z dz






  


  

 
  

 
   .       (1.244) 1632 

 1633 

It is essential that the limit be taken symmetrically on each side of the singularity. 1634 

 Application of the Cauchy Theorem to the derivative of an analytical function gives the Cauchy 1635 

Integral Theorem: The derivative 1636 

 1637 

     
lim
z w

df z f z f w

dz z w

 
  

 
         (1.245) 1638 

 1639 

implies 1640 

 1641 

   
0

f z f w

z w

 
 

 





 ,          (1.246) 1642 

 1643 

so that 1644 

 1645 

   

       

     
2

0

ln ln

2 ,

f z f w

z w z w

f w d z w f w d z w i

f w i f w i




 

   
   

    

    

 

 
 
 

        (1.247) 1646 

 1647 

where eq. (1.208) for the principle complex logarithm has been used and the closed contour integral of 1648 

the real function  ln z w  is zero by the Cauchy theorem. This produces the Cauchy integral theorem: 1649 

 1650 

 
 1

2

f z
f w

i z w

 
  

 





.          (1.248) 1651 

 1652 

When combined with the Hilbert transforms and crossing relations discussed in §1.9.6 below, eq. 1653 

(1.248) establishes the Kronig-Kramers relations that relate the real and imaginary components of 1654 

physically important functions. 1655 

 The Hilbert transforms are obtained by applying the Cauchy theorem to a contour comprising a 1656 

segment of the real-axis and a semicircle joining its ends. In the limit that the segment is infinitely long 1657 

so that integration is performed from x = –∞ to x = +∞ the contribution from the semicircle vanishes if 1658 



Page 48 of 112 

 

 

the function has the (physically necessary) property that it vanishes as z→∞. Application of the Cauchy 1659 

theorem to this contour for      f w u w iv w   gives 1660 

 1661 

 
 

       

   

1

1 1

f x dx
f w

i x w

u x iv x dx u x dx v x dxi

i x w x w x w

u w iv w



  





  

 




     
  

 





  
 
 

    (1.249) 1662 

 1663 

so that 1664 

 1665 

 
 1 v x dx

u w
x w












          (1.250) 1666 

 1667 

and 1668 

 1669 

 
 1 u x dx

v w
x w














.          (1.251) 1670 

 1671 

Equations (1.250) and (1.251) are the Hilbert transforms. Note that u(x) or v(x) must be known 1672 

everywhere on the real axis in order that v(w) or u(w) can be evaluated at a single point. In physical 1673 

applications this often means assuming a specific function with which to extrapolate x→±∞. The form 1674 

of this extrapolation function is unimportant if the extrapolated integrand is a sufficiently small fraction 1675 

of the total. For v(w)=C = constant, 1676 

 1677 

   
2 2

0
0

2 2 1 2du C dx C dx C C

dw x w wx w x w   

 




  
    

  

 
 
 

     (1.252) 1678 

 1679 

so that 1680 

 1681 

 

 2 ln

du w
C

d w

 
  
 

.           (1.253) 1682 

 1683 

 The crossing relations derive from the important physical requirement that the Fourier or  1684 

Laplace transforms of certain functions f(ω) be real (these transforms are discussed below). For example 1685 

the Laplace transform of any complex response function is the negative time derivative of the decay 1686 

function which must be real (e.g. eq. (1.373) below). For such real Fourier transforms (see §1.7.9) 1687 

 1688 
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           †f x u x iv x f x u x iv x        ,      (1.254) 1689 

 1690 

that implies  1691 

 1692 

   u x u x             (1.255) 1693 

 1694 

and 1695 

 1696 

   v x v x   .           (1.256) 1697 

 1698 

Applying these crossing relations to the Hilbert transforms removes integration over negative values of x 1699 

and yields the Kronig-Kramers relations 1700 

 1701 

 
 

2 2

0

2 xv x dx
u

x


 










            (1.257) 1702 

 1703 

and 1704 

 1705 

 
 
2 2

0

2 u x dx
v

x




 










.          (1.258) 1706 

 1707 

They were first derived by Kronig and Kramers in the context of elementary particle theory in 1926 and 1708 

are also known as dispersion relations. For large values of ω the Kronig-Kramers relations yield the sum 1709 

rules: 1710 

 1711 

       2

0 0

2 2
lim ; limu w xv x dx v w u x dx
  

 

 


        (1.259) 1712 

 1713 

and 1714 

 1715 

 
 

 
 

20 0

0 0

2 2
lim ; lim

v x u x
u w dx v w dx

x x 



 

 

 


 

 
 
 

.     (1.260) 1716 

 1717 

1.9.6 Residue Theorem 1718 

 Application of the Cauchy Integral Theorem to a closed annulus enclosing the circle r z a   1719 

with concentric radii b and c such that b z a c    yields  1720 

 1721 
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2
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f z f z
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          (1.261) 1722 

 1723 

Placing      z w z a w a      and expanding  
1

z w


  as a geometric series [eq. (1.9)] gives 1724 

 1725 
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1 1
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n
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       (1.262) 1726 

 1727 

and 1728 

 1729 
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1 1
n

n
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       (1.263) 1730 

 1731 

Inserting eqs. (1.262) and (1.263) into eq. (1.261) yields 1732 
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     (1.264) 1734 

 1735 

Equation (1.264) is a Laurent series  
n

n
c w a





  with 1736 

 1737 
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f z
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         (1.265) 1738 

  
11

0
2

n

nc f z z a n
i

 
   

 
          (1.266) 1739 

 1740 

The n=–1 term in eq. (1.266) is important because  
1n

z a


  is then unity for all values of  z a .  1741 

 1742 

  1,2 k

k

f z i c   ,            (1.267) 1743 

 1744 

in which 1,kc  is called the residue at the k
th

 pole because it is the only term that survives the closed 1745 

contour integration. If f(z) is entirely analytical within the contour (i.e. there are no singularities so that 1746 
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,
0

n k
c   for n<0 and f(z) becomes a Taylor series) then the contour integral is zero and the Cauchy 1747 

Theorem is recovered. The coefficients c–1,k can be evaluated even if the Laurent expansion of f(z) is not 1748 

known, by taking the n
th
 derivative of f(z) for a singularity of order n [10,11]: 1749 

 1750 

 

   1

1 1

1

1 !

nn

n

z a

d z a f z
c

n dz



 



      
  

 

.         (1.268) 1751 

 1752 

For n=1 this is simply 1753 

 1754 

   1 lim
z a

c z a f z


    ,           (1.269) 1755 

 1756 

and for f(z)=g(z)/h(z) with g(z) having no singularites at z=a and    0
z a

h a dh dz


   then 1757 

 1758 

   

   

 

 
1 lim

n

z a

z a

z a g z g a
c

h z h a dh dz






 
  

  

.        (1.270) 1759 

 1760 

1.9.3.5 Plemelj Formulae 1761 

 The multivalued character of the complex logarithm [eq. (1.208)] leads to the curious result that 1762 

some functions can attain different values at the same point depending on the direction of approach to 1763 

the point (i.e. they are discontinuous at the point). Such functions are sectionally analytic. Consider a 1764 

line L (not necessarily straight or closed) and a circle of radius ρ centered at a point τ lying on L. Call the 1765 

segment of L that lies within the circle λ and the rest as Λ, and consider the following function as it 1766 

approaches τ from each end of L:  1767 

 1768 

 
     1 1 1

2 2 2
L

f t dt f t dt f t dt
F z

i t z i t z i t z


  


  
  

  
  
  

      (1.271) 1769 

       1 1
.

2 2 2

f t f dtf t dt f dt

i t z i t z i t z


 

  


    
  

 
 
 

     (1.272) 1770 

 1771 

The second integral of eq. (1.272) approaches zero as (i) z→τ from each side of L and (ii) ρ→0 (it is 1772 

important that the second limit be taken after the first). The third integral is the change in ln(t–z) as t 1773 

varies across λ and this is where the peculiarity originates. The magnitude  ln t z  has the same value 1774 

ln(ρ) at each end, but the angle subtended at z by the line segment λ has a different sign as z approaches 1775 

L from each side, because the directions of rotation of the vector (t–z) are opposite as t moves along λ 1776 

[10]. This angle contributes ±πi to the complex logarithm as z→τ from each side and yields the Plemelj 1777 

formulae: 1778 

 1779 

 
   

 
   1 1

2 2 2 2
L L

f t dt f f t dt f
F F
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 .    (1.273) 1780 
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 1781 

If L is a closed loop, the Plemelj formulae become 1782 

 1783 
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1

2

L
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f t f dt
F f

i t

f t f dt
F

i t


 

 




 





   


  










.       (1.274) 1784 

 1785 

so that a discontinuity of magnitude f(τ) occurs. Examples of {f(t),F(z)} pairs are (a and b  denote the 1786 

ends of L): 1787 

 1788 

   
 

 
1 1 ln

a z b
f t t F z z

b z a

 
 

    
 

       (1.275) 1789 

 1790 

and 1791 

 1792 

   
 

 

1 1

1
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1
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      (1.276) 1793 

 1794 

from which  1795 

 1796 

   
 

 
1 ln

z b
f t F z

z a

 
    

 
,        (1.277) 1797 

     
 

 
ln

z b
f t t F z b a z

z a

 
      

 
 .      (1.278) 1798 

 1799 

1.9.3.6 Analytical Continuation 1800 

 The radius of convergence R of a series expansion of a function f(z) about a point z0 is 1801 

determined by the nearest singularity. It is often possible to move z0 to another location inside R and find 1802 

another radius of convergence (that may or may not be determined by the same singularity) and thereby 1803 

define a larger part of the complex plane within which the expansion converges and the function is 1804 

analytic. This process is known as analytical continuation, and by repeated application the entire 1805 

complex plane can often be covered apart from isolated singularities (that may be infinite in number, 1806 

however). An important application of this principle is extending a function defined by a real argument 1807 

to the entire complex plane. The Laplace and Fourier transforms discussed below are examples of such a 1808 

continuation and using the residue theorem to evaluate a real integral is another. 1809 

 1810 

1.9.3.7 Conformal Mapping 1811 

 A complex function f(z)=u(x,y)+iv(x,y) can be regarded as mapping the points z in the complex z 1812 

plane onto points f(z) in the complex f plane. Changes in z produce changes in f(z) with a magnification 1813 
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factor given by df/dz. Since the derivative of an analytical function is independent of the direction of 1814 

differentiation this magnification is isotropic and depends only on the radial separation of any two points 1815 

in the z plane and such a mapping is said to be conformal. An important mapping function is the 1816 

complex exponential f(z)=exp(–z). 1817 

 1818 

1.9.4 Transforms 1819 

1.9.4.1 Laplace Transforms 1820 

 The Laplace transform is the single most important transform in relaxation phenomenology. It 1821 

essentially arises from mapping of the compex function z=exp(-s), where the variable s is the 1822 

conventional Laplace variable. The exponential function maps the inside of the circle of convergence 1823 

z R  onto the half plane defined by Re(s)>–ln(R) [a result of    ln ln 2s z R i n         . Thus 1824 

an analytical function G(z) defined by the MacLaurin series 1825 

 1826 

 
0

n

n

n

G z g z




            (1.279) 1827 

 1828 

transforms to  1829 

 1830 

   
0

expn

n

G s g ns




  ,          (1.280) 1831 

 1832 

that is generalized to an integral by replacing the integer variable n with a continuous variable t: 1833 

 1834 

     
0

expG s g t st dt



  .         (1.281) 1835 

 1836 

The function G(s) in eq. (1.281) is the Laplace transform of g(t). It is an analytical function if the 1837 

integral converges for sufficiently large values of s (specified below), that will always occur if g(t) does 1838 

not become infinite too rapidly as t→∞ (recall that this is the same condition used to derive the Hilbert 1839 

transforms from the Cauchy Integral Theorem). The edge of the area of convergence for eq. (1.281) is a 1840 

line defined by Re(s)>ρ where ρ is now the abscissa of convergence corresponding to the condition 1841 

Re(s)>–ln(R) in the MacLaurin expansion. 1842 

 The inverse Laplace transform is as important as the Laplace transform itself. It is derived by 1843 

considering the Cauchy integral theorem with variables s and z: 1844 

 1845 

 
 1

2

G z dz
G s

i s z








,          (1.282) 1846 

 1847 

in which the closed contour comprises a straight line parallel to the imaginary axis defined by x=σ>ρ (to 1848 

ensure convergence) and a semicircle in the half plane of positive x. If the radius of the semicircle 1849 

becomes infinite its contribution to the contour integration will be zero if G(z) approaches zero faster 1850 

than (s–z)
–1

. In this case the Cauchy integral becomes 1851 

 1852 
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G z dz
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          (1.283) 1853 

 1854 

where the direction of contour integration is clockwise. The factor (s–z)
–1

 is now expressed in terms of 1855 

the elementary integral 1856 

 1857 

       
1

0 0

exp exp exps z s z t dt st zt dt

 


         ,      (1.284) 1858 

 1859 

insertion of which into eq. (1.283) and exchanging the order of integration yields 1860 

 1861 

       

0

1
exp exp

2

i

i

G s st zt G z dt
i








 

 

 
   

 





 .      (1.285) 1862 

 1863 

Comparing eq. (1.281) with eq. (1.285) reveals that 1864 

 1865 

     
1

exp
2

i

i

g t st G s ds
i






 

 

  ,        (1.286) 1866 

 1867 

that is therefore the inverse Laplace transform of G(s). The path of integration of this inverse Laplace 1868 

transform can also be considered to be part of a closed contour in the s-plane with the connecting link 1869 

again being a semicircle of infinite radius. For 0t   this semicircle must pass through the negative half 1870 

plane of Re(s) to ensure exponential attenuation. Since this half plane lies outside the region of 1871 

convergence defined by Re(s)>ρ the contour must enclose at least one singularity and the integral 1872 

(1.286) is nonzero by the residue theorem and can be evaluated using it. For t<0 the semicircular part of 1873 

the closed contour must pass through the positive half plane of Re(s) to ensure exponential attenuation, 1874 

but since this contour lies totally within the area of convergence the integral is identically zero by eq. 1875 

(1.243). Thus 1876 

 1877 

     
1

exp 0
2

0 0

i

i

g t st G s ds t
i

t






 

 

  

 

         (1.287) 1878 

 1879 

Equation (1.287) ensures the causality condition that a response cannot precede the excitation at time 1880 

zero. This is the reason for Laplace transforms being so important to relaxation phenomenology. The 1881 

derivation of eq. (1.287) indicates that causality and analyticity are closely linked, and indeed it can be 1882 

shown that analyticity compels causality and vice versa; thus causality is a sufficient condition for the 1883 

Kronig-Kramer relations and other useful relations. 1884 

 The value of the abscissa of convergence σ can sometimes be determined by inspection, 1885 

especially if the function to be transformed includes an exponential factor. Consider for example the 1886 
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function    sinhng t t mt  for which the long time limit is  1
2

expnt mt . The integrand of the LT is 1887 

then      1 1
2 2

exp exp expn nt mt st t s m t       that is integrable if s>m so that σ=m. 1888 

 In relaxation applications the inverse Laplace transform involves integration of s along a purely 1889 

imaginary path with the real component constant, so that the Laplace variable s can be written as iω if ω 1890 

is real (as it must be for it to be a temporal frequency). Thus the transformation function exp(–st) 1891 

becomes exp(–iωt). 1892 

 The product of two Laplace transforms is not the Laplace transform of the product of the 1893 

functions. For      R s P s Q s  the inverse Laplace transform r(t) is the convolution integral 1894 

     
0

t

r t p q t d             (1.288) 1895 

that often arises in relaxation phenomenology because it expresses the Boltzmann superposition of 1896 

responses to time dependent excitations (§1.14). 1897 

 The bilateral Laplace transform is defined as 1898 

 1899 

     expF ds st f t dt





  ,         (1.289) 1900 

 1901 

that can be separated into two unilateral transforms 1902 

 1903 

 1904 

         
0 0

exp expF s st f t dt st f t dt

 

      .      (1.290) 1905 

 1906 

The first of these transforms diverges for large negative real values of s and the second diverges for 1907 

large positive real values of s so that convergence becomes restricted to a strip running parallel to the 1908 

imaginary s axis. Note that eq. (1.289) is not necessarily a Fourier transform (see below) because the 1909 

complex variable s can have a real component whereas the Fourier variable is purely imaginary. 1910 

 Laplace transforms are also useful mathematically because they transform differential equations 1911 

(for example in time) into simple polynomials (in frequency). This is readily shown using integration by 1912 

parts of the Laplace transform (LT) of the thn  derivative of the function f(t) that yields 1913 

 1914 

 
 1

1

0

0kn n
n n k

n k
k

d fd f
LT s F s s

dt dt


 



  
    

   
 .       (1.291) 1915 

 1916 

(the expression for this equation in [10] is evidently a typo) For  1 0n k   eq. (1.291) yields 1917 

 1918 

   0
df

LT sF s f
dt

 
  

 
.         (1.292) 1919 

 1920 

Because t→0 corresponds to ω→∞ eq. (1.292) can also be written as  1921 

 1922 
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df

LT sF s F
dt

 
   

 
         (1.293) 1923 

 1924 

where F(∞) is the limiting high frequency limit of F. Other Laplace transforms are exhibited in 1925 

Appendix A. Practically useful functions often have dimensionless variables, such as t/τ0 and s=iωτ0 for 1926 

example, and these introduce additional numerical factors into the formulae. For example, eq. (1.292) 1927 

becomes 1928 

 1929 

 
   0

0 0 0

/
/

df t
LT i F f t

dt


  

 
  

 
.       (1.294) 1930 

 1931 

 The Laplace-Stieltjes integral is a generalized Laplace transform where the integral is with 1932 

respect to a function of t rather than t itself and has the general form  1933 
 1934 

   
0

exp st d t


 .           (1.295) 1935 

 1936 

1.9.4.2 Fourier Transform 1937 

 Consider again the Laurent expansion for an analytical function f(z), eq. (1.195). As with the 1938 

Laplace transform the annulus of convergence for this series gets mapped by the exponential function 1939 

onto a strip parallel to the imaginary axis, but now negative values of the summation index are included 1940 

and the exponential mapping is confined to purely imaginary arguments to avoid exponential 1941 

amplification. Then, in analogy with eq. (1.280), 1942 

 1943 

   expn

n

G g in 




  .         (1.296) 1944 

 1945 

Continuing the analogy with the Laplace transform derivation, eq. (1.296) can also be expressed in terms 1946 

of the continuous variable, t: 1947 

 1948 

     expG g t i t dt 




  .         (1.297) 1949 

 1950 

G(ω) is the Fourier transform (FT) of g(t) and is in general complex. The similarity of the Fourier and 1951 

Laplace transforms can be exploited to derive the inverse Fourier transform. Recall the inverse Laplace 1952 

transform eq. (1.286): 1953 

 1954 

     
1

exp
2

i

i

g t G z zt dz
i






 

 

  .        (1.298) 1955 

 1956 

Putting z=σ+iω where σ is a constant so that dz=idω yields 1957 

 1958 

       
1

exp exp
2

t g t G i i t d    






     .      (1.299) 1959 
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 1960 

Now define  1961 

 1962 

     expf t t g t            (1.300) 1963 

 1964 

and 1965 

 1966 

   F G i    .          (1.301) 1967 

 1968 

Equation (1.299) then becomes 1969 

 1970 

     
1

exp
2

f t F i t d  






  ,        (1.302) 1971 

 1972 

and eq. (1.297) is essentially unchanged: 1973 

 1974 

     expF f t i t dt 




  .        (1.303) 1975 

 1976 

Equations (1.302) and (1.303) comprise the Fourier inversion formulae. They are more symmetric than 1977 

the Laplace formulae because the Fourier transform includes both positive and negative arguments. To 1978 

emphasize this symmetry f(t) is sometimes multiplied by (2π)
1/2

 and F(ω) is multiplied by (2π)
–1/2

 to 1979 

give Fourier pairs that have the same pre-integral factor of (2π)
–1/2

. 1980 

 The Fourier transform of a function that is zero for negative arguments is referred to as one 1981 

sided. The Laplace and inverse Laplace transforms [eqs. (1.281) and (1.286)] can then be expressed as 1982 

 1983 

     
0

expG i g t i t dt 


            (1.304) 1984 

 1985 

and 1986 

 1987 

       

 
0

1
exp 0

2

0 0 .

g t G i i t d t

t

  




  

 


       (1.305) 1988 

 1989 

 As with Laplace transforms the product of two Fourier transforms is not the Fourier transform of 1990 

the product but rather the Fourier transform of the convolution integral. For H(ω)=F(ω)G(ω): 1991 

 1992 

     
0

t

h t f g t d    .         (1.306) 1993 

 1994 

 Many of the formulae for Fourier transforms are closely analogous to those for pure imaginary 1995 

Laplace transforms. For example (cf. Appendix A): 1996 
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,          (1.307) 1998 

     0 0exp i t g t G    ,         (1.308) 1999 

     0 0expg t t i t G    ,         (1.309) 2000 

   
 n

n
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d G
it g t

d




  ,          (1.310) 2001 

 2002 

and 2003 

 2004 

 
   

n
n

n

d g t
i G

dt
   .          (1.311) 2005 

 2006 

A result of special interest is that the FT of a Gaussian is another Gaussian: 2007 

 2008 

         

   

2 2 2 2

1/2 2
2 2

2

exp exp cos sin exp

cos exp exp ,
4

i t a t dt t i t a t dt

t a t dt
a a

  

 


 

 





     

 
    

 

 



     (1.312) 2009 

 2010 

where the antisymmetric property of the sine function has been used. Placing 2 21/ ta  , where 
2

t
  is 2011 

the variance of t, yields    1/2 2 2/ exp / 4ta    for the FT. 2012 

 2013 

1.9.4.3 Z and Mellin Transforms 2014 

 For discretized functions f(n) the Z Transform is 2015 

 2016 

    1

0

n

n

F z f n z






 ,          (1.313) 2017 

 2018 

and the integral form of the inverse is 2019 

 2020 

    11

2

n

C

f n F z z dz
i

  , [CHECK]        (1.314) 2021 

 2022 

where C is a contour that encloses all the singularities in the integrand. This transform is used in digital 2023 

processing applications.  2024 

 The continuous Mellin Transform is 2025 

 2026 

    1

0

sM s m t t dt



  ,          (1.315) 2027 

 2028 
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and its inverse is 2029 

 2030 

   
1

2

i

s

i

m t M s t ds
i






 



 

  .          (1.316) 2031 

1.9.5 Other Functions  2032 

1.9.5.1 Heaviside and Dirac Delta Functions 2033 

 The Heaviside function h(t–t0) is a unit step that increases from 0  to 1 at t=t0: 2034 

 2035 

  0

0

0

0

1

t t
h t t

t t


  


.         (1.317) 2036 

 2037 

The differential of h(t–t0) is 2038 

 2039 

    0

0 0

0

1

0

t t
dh t t t t

t t



    


        (1.318) 2040 

 2041 

where δ(t–t0) is the Dirac delta function that is also the limit of any peaked function whose width goes to 2042 

zero and height goes to infinity in such a way as to make the area under it equal to unity (a rectangle of 2043 

height h  and width 1/h for example). The area constraint is needed to ensure consistency with the 2044 

integral of δ(t–t0) being the Heaviside function. The Dirac delta function has the useful property of 2045 

singling out the value of an integrand at (t–t0). For example the Laplace transform of δ(t–t0) is  2046 

 2047 

     0 0

0

exp expt t st dt st


            (1.319) 2048 

 2049 

that we write as    0 0
expt t st    . The Laplace transform of      0 0g t h t t t t dt     is, from 2050 

eq. (1.292), 2051 

 2052 

 
 0

0

exp st
h t t

s


  .          (1.320) 2053 

 2054 

For a ramp function input that is proportional to t for 
0

t t , 2055 

 2056 

 
 

0

0

0 0

0
Ramp

t t
t t

t t t t


  

 

,         (1.321) 2057 

 2058 

the Laplace transform is   2

0exp /s t s  because Ramp is the integral of the Heaviside step function (see 2059 

eq. A1???) 2060 

 2061 
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0

0 0

0 0 0 0 0

0 0

Ramp ' ' ' ' ' ' ' '

tt t t

t t

t t h t t dt h t t dt h t t dt h t t dt            .   (1.322) 2062 

2063 
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1.9.5.2 Response and Green Functions 2064 

 Consider a material that produces an output y(t) when an input excitation x(t) is applied to it. The 2065 

relationship between y(t) and x(t) is determined by the circuit's transfer or response function g(t). For 2066 

example if x is an electrical voltage and y is an electrical current then g is the material's conductivity. 2067 

The corresponding Laplace transforms are X(s), Y(s) and G(s). When the input x(t) to a system is a delta 2068 

function δ(t–t0) the response function g(t) is named the system's impulse response function and is also 2069 

known as the system's Green Function. It completely determines the output y(t) for all possible inputs 2070 

x(t) because the latter can always be expressed in terms of δ(t–t0): 2071 

 2072 

     
0

' ' 'x t x t t t dt


  .          (1.323) 2073 

 2074 

Thus for any arbitrary input function x(t) the response y(t) of a system with Green function g(t) is 2075 

 2076 

     
0

' ' 'y t x t g t t dt



  .  (1.324) 2077 

 2078 

This is identical to the convolution integral for an inverse Laplace transform, eq. (1.288), so that 2079 

 2080 

     * * *Y i X i G i   .  (1.325) 2081 

 2082 

Since G*(iω) is often the complex response function of a material, for example the complex 2083 

conductivity permittivity σ*(iω), the advantage of working in the frequency domain rather than the time 2084 

domain is clear. 2085 

 2086 

1.9.5.2 Schwartz Inequality, Parseval Relation, and Bandwidth-Duration Principle 2087 

 The integral 2088 

 2089 

           
2 2 22 2

0 1 22P z xQ z dz P z x P z Q z x Q z a a x a x



          (1.326) 2090 

 2091 

cannot be negative if x and z are independent of one another. This is equivalent to the quadratic 2092 

integrand having no real roots that is expressed by the discriminant condition 2

1 0 24 0a a a   or 2093 
2

1 0 24a a a . Thus, for real P and Q, 2094 

 2095 

       

2

2 2P z Q z dz P z dz Q z dz

  

  

     
     

     
   ,      (1.327) 2096 

 2097 

a relation known as the Schwartz inequality. For many (most?) relaxation applications, α=0 or –∞ and 2098 

β=+∞. A noteworthy consequence of the Schwartz inequality is that the reciprocal of an average, say 2099 

1/ F , is not generally equal to the average of the reciprocal, 1/ F : putting 
2

P F  and 
2

1/Q F  2100 

into eq. (1.327) gives 2101 

 2102 

1/ 1F F  .           (1.328) 2103 
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 2104 

The Schwartz inequality is a special case of Hölder’s inequality: 2105 

 2106 

       

1/ 1/n m

n mP x Q x dx P x dx Q x dx

  

  

   
    
   

   , 
1 1

1; 1; 1n m
n m

 
    

 
   (1.329) 2107 

 2108 

for n=m=2 and after squaring each side. The equality holds if and only if 2109 

   
1

, (=realconstant) 0
m

P x c Q x c


  . Minkowski’s inequality is [1] 2110 

 2111 

       

1/ 1/ 1/n n n

n n n

P x Q x dz P x dx Q x dx

  

  

     
       

     
        (1.330) 2112 

 2113 

for which the equality obtains only if     =realconstant 0P x cQ x c  . 2114 

 An important identity associated with Fourier transforms is the Parseval relation. Consider the 2115 

integral 2116 

 2117 

   †

1 2I g t g t dt





  ,          (1.331) 2118 

 2119 

and let the Fourier transforms of g1(t) and g2(t) be G1(ω) and G2(ω) respectively. Replacing g1(t) by its 2120 

inverse Fourier transform [eq. (1.302)] yields 2121 
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       (1.332) 2122 

 2123 

Placing g1(t)=g2(t)=g(t) so that G1(ω)=G2(ω)=G(ω) and equating eq. (1.331) to (1.332) gives the 2124 

Parseval relation 2125 

 2126 

   
2 21

2
g t dt G d 



 

 

  .         (1.333) 2127 

 2128 

The occurrence of the squares in the Parseval relation guarantees that both integrands in eq. (1.333) are 2129 

real and positive, that are essential properties for relaxation functions such as probability and relaxation 2130 

time distributions. For example, if  
2

g t  is interpreted as the probability that a signal occurs between 2131 

the times t and t+dt, the requirement that probabilities must integrate to unity is expressed as 2132 
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 2133 

 
2

1.0g t dt





 ,           (1.334) 2134 

and the Parseval relation then implies 2135 

 2136 

 
21

1.0
2

G d 






           (1.335) 2137 

 2138 

where  
2

G d   is the probability that the signal contains frequencies between ω and ω+dω. 2139 

 Similar applications of the Parseval relation to the time and frequency variances of a signal, 2140 

when combined with the Schwartz inequality, yield an expression known as the Bandwidth-Duration 2141 

relation. The derivation of this relation is instructive. For convenience and without loss of generality the 2142 

origin of time is chosen so that the average time is zero: 2143 

 2144 

 
2

0t t g t dt





            (1.336) 2145 

 2146 

so that the variance of the times of signal occurrence is 2147 

 2148 

   
2 22 2 2

t t t t t g t dt




     .        (1.337) 2149 

 2150 

The average frequency is 2151 

 2152 

 
21

2
G d   







  ,          (1.338) 2153 

 2154 

and the variance of the angular frequency distribution of the signal is 2155 

 2156 

     
2 2 22 1

2
G d      







    .      (1.339) 2157 

 2158 

The time variance can be expressed in the frequency domain using the relation for the first derivative of 2159 

the Fourier transform of G(ω) [n=1 in eq. (1.310)]: 2160 

 2161 

 
 

dG
itg t dt

d




  ,          (1.340) 2162 

 2163 

application of the Parseval relation to which yields 2164 

 2165 
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 .       (1.341) 2166 

 2167 

Applying the Schwartz inequality to     /P dG d    and      Q G      then yields 2168 

 2169 
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d G d G d
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 .  (1.342) 2170 

 2171 

From eqs (1.339) and (1.341) the left hand side of eq. (1.342) is 
2 2 2

4
t 

   , and the right hand side is 2172 

 
       

2
2

21

2

dG
G d d G

d


      









               
    

 
 

,    (1.343) 2173 

 2174 

where the elementary relation 2175 

 2176 

 
   

21

2

dG
G d d G

d


  


         (1.344) 2177 

 2178 

has been invoked. The inequality (1.327) then becomes  2179 

 2180 

   

2

22 2 2 1
4 .

2
t d G     





 
  
 
          (1.345) 2181 

 2182 

The functions  
2

G   and  
2

G   are integrable so that 2183 

 2184 

 
2

0d G 




           (1.346) 2185 

 2186 

and eq. (1.345) becomes 2187 

 2188 

 

2

22 2 2 1
2

4 t d G    




  .         (1.347) 2189 

 2190 

The function  
2

G   is also integrable [eq. (1.338)] and must also approach zero as ω→±∞, so that 2191 

 2192 
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   ,   (1.348) 2193 

 2194 

from which 2195 

 2196 

   
2 2

d G G d   
 

 

           (1.349) 2197 

 
2

2 g t dt




     (Parseval relation)       (1.350) 2198 

  2  . [from eq. (1.334)]       (1.351) 2199 

 2200 

After taking into account the magnitude and the square eq. (1.347) then becomes 2201 

 2202 
2 2 2 24 t                (1.352) 2203 

 2204 

or 2205 

 2206 

2 1.0
t 

   .           (1.353) 2207 

 2208 

Equation (1.353) expresses the Bandwidth-Duration principle, and has important implications for both 2209 

relaxation science and physics in general. For example, it implies that an instantaneous pulse signal 2210 

described by the Dirac delta function δ(t–t0) has an infinitely broad frequency content, so that detection 2211 

of short duration signals requires instrumentation of wide bandwidth. Conversely, limited bandwidth 2212 

instruments (or transmission cables etc.) will smear a signal out in time: using a narrow bandwidth filter 2213 

to remove noise slows down the response to a signal, for example, and results in longer times for 2214 

transients to decay. Although quantum mechanics lies far outside the scope of this book, it is of interest 2215 

to note that the quantum mechanical consequence of the Bandwidth-Duration relation is none other than 2216 

the Heisenberg uncertainty principle. Applying the Planck-Einstein relation between energy and 2217 

frequency, E hv  , to eq. (1.353) yields 2 2
t

E t      , so that / 2E t    (often stated as 2218 

E t    but as has been noted elsewhere [15] this inequality is “less precise” than the relation given 2219 

here, although the factor of 2 is eliminated if the uncertainties are taken to be root mean square values. 2220 

Similarly the deBroglie relation p=h/λ, where p is momentum and λ is wavelength, results in the 2221 

uncertainty principle for position x and momentum, / 2p x   . 2222 

 2223 

1.9.5.3 Decay Functions and Distributions 2224 

 In the time domain the response function R(t) is usually expressed in terms of the normalized 2225 

decay function following a step (Heaviside) function in the perturbing variable P at an earlier time t',  2226 

P(t'–t). The normalized decay function, ϕ(t–t'), is unity at t=t', zero in the limit of long time, and is 2227 

always positive for relaxation processes. Such a decay function can be expanded as an infinite sum of 2228 

exponential functions 2229 

 2230 

   
1

exp / 1n n n

n

t g t g 




 
   

 
   ,        (1.354) 2231 
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 2232 

in which τn are relaxation or retardation times (the distinction is discussed later in this section). The 2233 

integral form of eq. (1.354) is 2234 

 2235 

   
0

exp
t

t g d  



 

  
 

 ,         (1.355) 2236 

 2237 

in which the distribution function g(τ) is normalized to unity: 2238 

 2239 

 
0

1g d 


 .           (1.356) 2240 

 2241 

The distribution function is sometimes referred to as a density of states, especially in the physics 2242 

literature. For many relaxation phenomena g(τ) is so broad that it is better to express it in terms of ln(τ): 2243 

 2244 

   ln exp ln
t

t g d  






 
  

 
 ,        (1.357) 2245 

 2246 

with 2247 

 2248 

 ln ln 1g d 




 .          (1.358) 2249 

 2250 

Clearly 2251 

 2252 

   lng g   .           (1.359) 2253 

 2254 

The factor τ relating g(lnτ) to g(τ) is a common source of confusion. To avoid needless repetition we use 2255 

only g(lnτ) in what follows. 2256 

 Equations (1.355) and (1.357) indicate that a nonexponential decay function and a distribution of 2257 

relaxation/retardation times are mathematically equivalent. Physically, however, they may signify 2258 

different relaxation mechanisms. If physical significance is attached to g(τ) a distribution of physically 2259 

distinct processes is implied. The number of such processes may be quite small (3-4 for example), 2260 

because the superposition of a small number of sufficiently close Debye peaks in the frequency domain 2261 

is difficult to distinguish from functions derived from a continuous distribution (see §1.12.1 for 2262 

example). On the other hand, if physical significance is attached to the nonexponentiality of the decay 2263 

function ϕ(t) then there is an implication that the relaxation mechanism is cooperative in some way, i.e. 2264 

that relaxation of a particular non-equilibrium state (a distorted chemical bond for example) requires the 2265 

movement of more than one molecular grouping. An example of such a mechanism is the Glarum model 2266 

described in the next section. Additional experimental information is needed to determine if g(τ), ϕ(t) or 2267 

both have physical significance (nmr for example). 2268 

 In many applications it is convenient to approximate ϕ(t) as a finite (Prony) series analog of eq. 2269 

(1.354): 2270 

 2271 
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1

exp / 1
N

n n n

n

t g t g 


 
   

 
          (1.360) 2272 

 2273 

This must be done with care because the coefficients gn for a particular τn change as the number of terms 2274 

and/or their separation is changed, i.e. the finite series are not unique. For example increasing the 2275 

number of terms N can (counter-intuitively) sometimes yield poorer best fits. The coefficients gn and the 2276 

function g(τ) must be positive in relaxation applications. Positive values for all gn or g(τ) can be regarded 2277 

as a definition of a relaxation process, as opposed to a process with resonance character that can be 2278 

described (for example) by an exponentially under-damped sinusoidal function for ϕ(t): 2279 

 2280 

   0exp cos
t

t t 


 
  

 
.         (1.361) 2281 

 2282 

The cosine factor produces negative values of ϕ(t) provided a certain condition relating τ and ω0 is met 2283 

(see below), so that gn and g(τ) can also attain negative values. Because of the importance of eq. (1.360) 2284 

to relaxation processes algorithms for least squares fitting nonexponential decay functions ϕ(t) have 2285 

been published that are constrained to generate only positive values of gn [16], and are available in 2286 

software packages. As noted earlier, the required positivity of gn and g(τ) for relaxation applications is 2287 

assured when the square of the complex modulus is used, hence the general applicability of the Schmidt 2288 

inequality and the Parseval relation to relaxation phenomena as discussed in §1.9.5.2 for example. 2289 

 The distribution function g(lnτ) is characterized by its moments n  defined by 2290 

 2291 

 ln lnn n g d   




           (1.362) 2292 

 2293 

or equivalently 2294 

 2295 

 
 1

0

1n nt t dt
n

 



  ,         (1.363) 2296 

 2297 

where Γ is the gamma function. Equation (1.363) is easily derived by inserting eq. (1.357) for ϕ(t) into 2298 

the integrand: 2299 
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 (1.364) 2301 

 2302 

Differentiation of eq. (1.357) yields 2303 

 2304 
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 . (n a positive integer)       (1.365) 2305 

 2306 

 The generalized forms of Q*(iω) and its components are 2307 

 2308 
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 ,        (1.368) 2313 
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 (retardation)      (1.369) 2315 
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 (relaxation).      (1.370) 2316 

 2317 

Differentiation of eq. (1.357) with respect to time yields 2318 
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g d
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,        (1.371) 2320 

 2321 

Laplace transformation of which gives 2322 
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    (1.372) 2324 
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 2325 

so that 2326 

 2327 

   
0

* exp
d

Q i i t dt
dt


 



 
  

 





.        (1.373) 2328 

 2329 

 Decay functions can also be defined for non-relaxation processes such as resonances (under-2330 

damped oscillators). Consider the differential equation for a one dimensional, damped, unforced, 2331 

classical harmonic oscillator: 2332 

 2333 
2

2

02
0

d x dx
x

dt dt
    ,          (1.374) 2334 

 2335 

where ω0 is the natural frequency of the undamped oscillator and γ(>0) is a damping coefficient (to be 2336 

identified below with a relaxation time τ0). For γ=0 this is the equation for a harmonic oscillator and for 2337 

ω0=0 it is the equation for an exponential decay in x with time constant γ. Laplace transformation of eq. 2338 

(1.374) gives  2339 

 2340 

         2 2

0

0

0 0 0
t

dx
s X s sx s X s x X s

dt
  



  
          
  

,     (1.375) 2341 

 2342 

where the formulae for the Laplace transforms of first and second derivatives have been invoked [eq. 2343 

(1.292)]. Rearranging eq. (1.375), and expressing the boundary conditions that the oscillator is released 2344 

from rest at x=xmax at t=0 by placing x(0)=xmax and 
0

/ 0
t

dx dt

  yields 2345 

 2346 

 
  max

2 2

0

s x
X s

s s



 




 
,          (1.376) 2347 

 2348 

the denominator of which has roots [eq. (1.2)] 2349 

 2350 
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,         (1.377) 2351 

 2352 

so that 2353 

 2354 
1/2

2
1/2

2 2 2

0 02 4
2

s s


   

  
         

   

.       (1.378) 2355 

 2356 
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Expanding eq. (1.376) as partial fractions yields 2357 

 2358 

  maxx s s
X s

s s s s s s

  

   

   
   

    
,         (1.379) 2359 

 2360 

and recalling that the inverse LT of (z–a)
–1

 is exp(at) [eq. A4] gives 2361 

 2362 

 
 

         
1/2

2 2

0

max

4 exp exp
x t

X t s s t s s t
x

   


           .    (1.380) 2363 

 2364 

The functions  exp s t
  decay monotonically or oscillate depending on whether s+ and s– are real or not, 2365 

i.e. on whether or not 2 2 2

04 0    . For 2 2 2

04 0D    , insertion of the expressions for s+ and s– 2366 

into eq. (1.380) and rearranging terms yields two exponential decays with time constants 2/(γ±D): 2367 

 2368 

 
   

exp exp
2 2 2 2

D t D tD D
X t

D D

                
            
            

.     (1.381) 2369 

 2370 

Note that  
1/2

2 2

04D       so that D   is always positive and eq. (1.381) cannot admit 2371 

unphysical exponential increases in X with time t. It is convenient to rewrite eq. (1.381) as 2372 

 2373 

 
1 1
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   (1.382) 2374 

 2375 

For D
2
 < 0 and D i D  eq. (1.382) yields 2376 

 2377 
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   (1.383) 2378 

 2379 

that is a sinusoidal oscillation with frequency  
1/2

2 2

1 0 0/ 4       and an exponentially decaying 2380 

amplitude with time constant 0 2 /  . 2381 

 When D=0 the repeated roots in eq. (1.376) invalidate the expansion into partial fractions. 2382 

Instead, 2383 

 2384 

 
 

   

 

 
max maxmax
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/ 2

/ 2/ 2 / 2

x s xx
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ss s

 

 


  

 
       (1.384) 2385 

 2386 

so that 2387 

 2388 

       max exp / 2 / 2 exp / 2X t x t t t        ,       (1.385) 2389 

 2390 

where the Laplace transform  
 

 11
exp

n ns a t at
n

   


 has been applied and again the time 2391 

constant for exponential decay is 2/γ. Equation (1.385) is therefore the decay function for a critically 2392 

damped harmonic oscillator. The critical damping condition 0D   corresponds to 0 0/ 2 1/     can 2393 

therefore be expressed as 0 0 1   . 2394 

 For a forced oscillator (driven by a sinusoidal voltage for example), the right hand side of eq. 2395 

(1.374) is a time dependent force: 2396 

 2397 

 
2

2

02

d x dx
x f t

dt dt
    ,          (1.386) 2398 

 2399 

and the transform is  2400 

 2401 

     2 2

0s s X s F s    .          (1.387) 2402 

 2403 
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The admittance A(s) of the system is  2404 

 2405 

 
 

  2 2

0

1X s
A s

F s s s 
 

 
,         (1.388) 2406 

 2407 

its zeros are associated with resonance, and as noted above critical damping occurs when γ=2ω0. Putting 2408 

s=iω into eq. (1.388) yields 2409 

 2410 

 
 

  2 2

0

1X i
A i

F i i




   
 

 
.        (1.389) 2411 

 2412 

Examples of A are the complex relative permittivity  * i   and complex refractive index  *n i  2413 

[related as 2* *n  , see Chapter Two].  2414 

 2415 

1.11.3 Response Functions for Time Derivative Excitations 2416 

 It commonly happens that relaxation and retardation functions describe the responses to some 2417 

form of perturbation and the time derivative of that perturbation. Examples of such pairs are (i) the shear 2418 

modulus G [ratio of shear stress to shear strain] and the shear viscosity η [ratio of shear stress to rate of 2419 

shear strain], and (ii) the relative permittivity ε [ratio of charge density to electric field (see Chapter 2 for 2420 

exact definition)] and the specific electrical conductance σ [ratio of current density (= time derivative of 2421 

charge density) to electric field]. Such pairs of functions are clearly related. The relationship is also 2422 

simple because the Laplace Transform of a first time derivative is also simple [eqs. (1.292)-(1.293)]: 2423 

       /LT df dt sF s F i F i F       . For example the electrical permittivity 2424 

   0 0e * /i q t V    and conductivity     0* / /i dq t dt V       are related as 2425 

   0e * * /i i i      (see Chapter Two for details).  2426 

 2427 

1.11.4 Computing g(τ) from Frequency Domain Relaxation Functions 2428 

 The distribution function g(lnτ) can be found from the functional forms of Q"(ω), Q'(ω), and 2429 

Q*(iω). The derivations of the relations are instructive because they rely on many of the results 2430 

discussed so far. The method of Fuoss and Kirkwood [17] using Q"(ω) is described first and then 2431 

extended to include Q'(ω) and Q*(iω). The Fuoss-Kirkwood method is a specific example of the general 2432 

solution described by Titchmarsh [12] using Fourier transforms. In describing the Fuoss-Kirkwood 2433 

method we depart from their original nomenclature to maintain consistency with the rest of this chapter, 2434 

and also slightly modify their procedure for the same reason. The resulting formulae are then applied to 2435 

several empirical frequency domain relaxation functions. 2436 

 Recall that [eq. (1.368)] 2437 

 2438 
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1
Q g d


  

 





 
   
 .       (1.390) 2439 

 2440 

Let τ0 be a characteristic time for the relaxation/retardation process and define new variables: 2441 
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 2442 

 0ln /T   ,           (1.391) 2443 

 2444 

 0lnW   ,            (1.392) 2445 

 2446 

   lnG T g  ,           (1.393) 2447 

 2448 

so that ωτ = exp(T – W). Equation (1.390) is then  2449 

 2450 
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 .        (1.394) 2451 

 2452 

Now define the kernel  K Z  2453 

 2454 
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1 exp 2 2

Z Z
K Z
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  (Z=X+iY)      (1.395) 2455 

 2456 

so that 2457 

 2458 

     "Q W G T K T W dT





  .        (1.396) 2459 

 2460 

Equation (1.396) is the convolution integral for a Fourier transform, eq. (1.306), so that 2461 

 2462 

     "q s g s k s  ,           (1.397) 2463 

 2464 

where 2465 
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     " " expq s Q W isW dW





  ,        (1.398) 2467 
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     expg s G T isT dT





  ,         (1.399) 2469 
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 .     (1.400) 2471 

 2472 

Rearrangement of eq. (1.397) and taking the inverse Fourier transform yields 2473 

 2474 
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,         (1.401) 2475 

 2476 

so that G(T) can in principle be computed from q"(s)=q"(iω) or Q"(W) once k(s) is known.  2477 

 To obtain k(ω) latter first consider eq. (1.400) as part of the contour integral 2478 

 2479 

   1
2

sech expZ isZ dZ          (1.402) 2480 

 2481 

and evaluate it using the residue theorem. Note that this procedure invokes analytic continuation, since 2482 

the function sech(X)exp(isX) along the real axis is extended to sech(Z)exp(isZ) in the complex plane. 2483 

The contour used by Fuoss and Kirkwood was an infinite rectangle bounded by the real axis, two 2484 

vertical paths at X = ±A→±∞, and a path parallel to the real axis at Y=B→∞. The reader is referred to the 2485 

original literature [17] for this derivation. Here, an alternative contour is used comprising the real axis 2486 

between A   (the desired integral), and a connecting semicircle in the positive imaginary part of 2487 

the complex plane 0Y  . For the latter, the complex exponential      exp exp expisZ isX sY   is 2488 

oscillatory with infinite frequency as X→±∞. A theorem due to Titchmarsh [11] states that the integral 2489 

of a function with infinite frequency is zero if the integral is finite as the argument goes to infinity, as is 2490 

the case here for the function sech(X)exp(–Y)=sech(X) along the real axis]: 2491 

 2492 

       sech arctan sinh arctan arctan
2 2

X dX X
 










          .  (1.403) 2493 

 2494 

Thus the semicircular contour integral is indeed zero and the only surviving part of the contour integral 2495 

is the desired segment along the real axis (which is not zero because exp(iY)=1 for Y=0 and is not 2496 

oscillatory). The contour integral is evaluated using the residue theorem. The poles enclosed by the 2497 

contour are located on the imaginary Y axis when sech(iY)=sec(Y) is infinite, i.e. when 2498 

cos(Y)=1/sec(Y)=0 that occurs when Y=(n+½)iπ/2. The residues c–1(n) for the poles of the function 2499 

         exp sech / 2 exp / 2coshK Z isX Z isX Z      are obtained from eq. (1.270) with 2500 

 1
2 / 2a n i  ,  expg isY  and    cosh / sinhh Y dh dY Y   . Thus for each value of n, 2501 
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    (1.404) 2503 

 2504 

The sum is a geometric series (eq. (1.11)) 2505 

 2506 
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so that 2509 

 2510 

   
   

2 / 2
exp / 2 exp / 2

k s i S
s s
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 2512 

Insertion of eq (1.406) into eq. (1.401) yields 2513 
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,   (1.407) 2515 

 2516 

which is the sum of inverse Fourier transforms of q"(s) with complementary variables (T+iπ/2) and  2517 

(T–iπ/2). The expression for g[ln(τ/τ0)] (necessarily real and positive) is then obtained by replacing 2518 

 0ln   in  0" lnQ  
 

 with  0ln / / 2i   : 2519 
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For     0 0" " exp lnQ Q  
 

 eq. (1.408) becomes 2522 
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.    (1.409) 2524 

 2525 

The phase factors exp(±iπ/2) correspond to a difference in the sign of the imaginary part of the argument 2526 

of Re[Q"(z=x+iy)]. The effect of this on the sign of Re[Q"(z)] is obtained by expanding the factor 2527 

ωτ/(1+ω
2
τ

2
) of eq. (1.390), since g(lnτ) is real and positive: 2528 
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 2531 

Equation (1.410) contains only the squares of y and is therefore independent of the sign of y. Thus eq. 2532 

(1.408) simplifies to 2533 

 2534 
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 2536 

The term exp(iπ/2) is shorthand for  
0

lim i





  and in most cases can be equated to i. Exceptions occur 2537 

when g(lnτ) is a line spectrum, the simplest case of which is the single relaxation time (Dirac delta 2538 

function) spectrum (vide infra), and when a power of the frequency n  occurs in  0
"Q   for which 2539 

   cos / 2 sin / 2ni n i n    should be used. 2540 

 The derivation of g(lnτ) from Q'(ω) is similar except that a different definition of the kernel K(Z) 2541 

is needed. Recall that [eq. (1.366)] 2542 
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     (1.412) 2544 

 2545 

and redefine the retardation kernel as (the relaxation case is considered below) 2546 
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so that 2550 
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 2553 

Equation (1.414) can be made a part of a semicircular closed contour as before and evaluated in the 2554 

same way, because the contour integral in the positive imaginary half plane is again zero (additional 2555 

exponential attenuation guarantees this). The poles also lie at the same positions on the iY axis as those 2556 

of the kernel of the Q" analysis but the residues are different because of the additional exp(–Z) term [cf. 2557 

eq. (1.404)] that for Z=(n+1/2)iπ equals –i(–1)
n
. Thus the geometric series corresponding to eq. (1.405) 2558 

is 2559 
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 .        (1.416) 2565 

 2566 

Thus from eq. (1.401)  2567 
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so that 2570 
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 .   (1.418) 2572 
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     (1.420) 2573 

 2574 

In this case the sign of Q'(z) changes when the imaginary component y of its argument changes sign: 2575 

 2576 
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,     (1.421) 2577 

 2578 

so that 2579 

 2580 

      0

2
Im ' / exp / 2G T Q i  



        
.       (1.422) 2581 

 2582 

 The same result is obtained for the relaxation form of Q'(ω). Reversing the signs of T and W so 2583 

that    0 0ln / ln /T        and  0lnW    gives    
1

exp T W

   and the calculation of 2584 

the kernel proceeds as before. Substituting  0ln /   in g(lnτ) for  
1

0


 in Q'(ω) at the end is the 2585 

same as replacing  0  with  0ln /   for the retardation case except for a change in the sign of 2586 

 0Im 'Q     that compensates for    exp / 2 exp / 2i i    that arises from the changes in sign of 2587 

T and W and the change in sign of the imaginary component of Q'(ω) [CHECK]: 2588 

 2589 
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 2591 

 The expression for g(lnτ) in terms of Q*(iω) is most conveniently derived using the Titchmarsh 2592 

result [12] that the solution to 2593 

 2594 
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 2596 

is 2597 

 2598 
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         .      (1.425) 2599 

 2600 

Equation (1.424) is brought into the desired form using the variables 2601 
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         (1.426) 2603 

 2604 

so that for retardation processes 2605 

 2606 
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      (1.427) 2607 

 2608 

and 2609 

 2610 

          0 0

1
ln Im * / exp * / exp

2
g Q i Q i      



              
. [CHECK]  (1.428) 2611 

 2612 

The symmetry properties of eq. (1.428) are found by noting that    0 0
Im * Re "Q i Q          and 2613 

examining eq. (1.410). In this case the different phase factors make it necessary to find the effects of 2614 

changing the sign of the real component of the argument, and eq. (1.410) informs us that 2615 

   Re " , Re " ,Q x iy Q x iy         . Thus the final result is 2616 

 2617 
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1
ln Im * / expg Q i   



        
.       (1.429) 2618 

 2619 
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In this case also exp(iπ) is shorthand for  
0

lim 1 i





   and in situations where the imaginary component 2620 

of Q*[(τ0/τ)exp(iπ)] appears to be zero this limiting formula should be used. This again occurs for a 2621 

single relaxation time, for example. 2622 

 2623 

1.12 Distribution Functions 2624 

1.12.1 Single Relaxation Time 2625 

 For an exponential decay function the frequency domain functions are: 2626 

 2627 
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,   for retardation, for relaxation       (1.432) 2630 
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,  (retardation)      (1.433) 2631 

  2 2
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.  (relaxation)      (1.434) 2632 

 2633 

A discussion of the physical and mathematical distinctions between relaxation and retardation functions 2634 

is deferred to §1.14. 2635 

 For convenience the loss function Q"(ω) is referred to here as a “Debye peak”: it has a maximum 2636 

of 0.5  at ωτ=1 and a full-width at half height (FWHH) that is computed from Q"(ω)=0.25: 2637 

 2638 

   
2 1/2

2 2
0.25 4 1 0 2 3 0.268and3.732

1


  

 
        


,    (1.435) 2639 

 2640 

so that the FWHH of the Debye peak when plotted on a log10(ω) scale is  10log 3.732 / 0.268 1.144  2641 

decades. This peak is very broad compared with resonance peaks and the resolution of adjacent peaks is 2642 

correspondingly much poorer. For example the sum of two Debye peaks of equal height will exhibit a 2643 

single combined peak for peak separations of up to  3/23 2 5.83 0.766    decades. The mathematical 2644 

details of computing this ratio are given in Appendix B1. For two peaks of different amplitudes the 2645 

asymmetry makes the mathematics intractable. A numerical analysis for two peaks with amplitudes A 2646 

and 2A shows that a peak separation of greater than about 15.6 or about 1.2 decades is required for 2647 

resolution, defined here as an inflection point with zero slope. Details for other amplitude ratios are 2648 

given in Appendix B2, where two empirical and approximate equations are also given that relate the 2649 

amplitude ratio A and the component peak separation for resolution. For three peaks of equal amplitude 2650 

their separation from one another for resolution (once again defined as the occurrence of minima 2651 

between the maxima) involves analyzing an intractable quintic equation. Distributions of relaxation or 2652 

retardation times that comprise a number of delta functions separated by a decade or less will therefore 2653 

produce smoothly varying loss peaks without any ripples to indicate the underlying discontinuous 2654 
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distribution function. Thus it is not surprising that as noted in §1.9.5.4 different distribution functions 2655 

will sometimes produce experimentally indistinguishable frequency domain loss functions. This 2656 

possibility goes unrecognized by too many researchers. 2657 

 Complex plane plots of Q' vs. Q" are often useful for data analysis. In the dielectric literature 2658 

such plots are known as Cole-Cole plots. For the retardation eqs. (1.432) - (1.433) the plots are semi-2659 

circles of radius  0 / 2Q Q  centered at   0 / 2,0Q Q : 2660 

 2661 

   
2 22 1 1

0 02 4
" 'Q Q Q Q Q Q                 (1.436) 2662 

 2663 

where Q' is along the x-axis and Q'' is along the y-axis. Equation (1.436) is derived in Appendix D as a 2664 

special case of the Cole-Cole distribution function (§1.12.4). 2665 

 The distribution function for a single relaxation/retardation time τ0 is a Dirac delta function 2666 

located at τ=τ0. It is instructive to demonstrate this from the formulae given above. From 2667 

   2 2

0 0 0" / 1Q       one obtains from eq (1.409) the unphysical result that 2668 
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   provides the correct result 2669 

(for convenience 0/   is replaced here by θ): 2670 
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 2673 

Similarly for    2 2

0 0' 1/ 1Q     : 2674 
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For    0 0* 1/ 1Q i i   : 2678 
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All three of these limiting functions are infinite at θ=1 and it is easily confirmed numerically that they 2682 

are indeed Dirac delta functions. It is also easy (albeit tedious) to demonstrate this algebraically and this 2683 

is done for eq. (1.437) in Appendix B, where it is shown that the area under the peaks is indeed unity 2684 

when ε→0. 2685 

1.12.2 Logarithmic Gaussian 2686 

 This function is used in lieu of the linear Gaussian because the latter is too narrow to describe 2687 

most experimental relaxation data. The log Gaussian function is [cf. eq. (1.78)] 2688 

 2689 
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.       (1.440) 2690 

 2691 

The average relaxation times 
n  are 2692 

 2693 
2 2

0 exp
2

n n n 
 

 
  

 
,          (1.441) 2694 

 2695 

for all n (positive or negative, integer or noninteger). Note that  21/ exp 1    , consistent with 2696 

eq. (1.328). 2697 

 The log gaussian function can arise in a physically reasonable way from a Gaussian distribution 2698 

of Arrhenius activation energies (see §1.14): 2699 
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 .         (1.442) 2701 

 2702 

Note that    a a ag E E E   as σE→0. From the Arrhenius relation  0ln / /aE RT    the 2703 

standard deviations in g(τ) and g(Ea) are related as 2704 

 2705 

E

RT



   ,   (1.443) 2706 

 2707 

so that a constant σE will produce a temperature dependent στ that increases with decreasing temperature. 2708 

 2709 

1.12.3 Fuoss-Kirkwood 2710 

 In the same paper in which the expressions for g(lnτ) in terms of Q"(ω), Q'(ω), Q*(iω) were 2711 

derived, Fuoss and Kirkwood [17] introduced an empirical function for Q"(ω). These authors noted that 2712 

the single relaxation time expression for Q"(ω) could be expressed as a hyperbolic secant function: 2713 

 2714 
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  (1.444) 2715 

 2716 

Since loss functions are almost always broader than the single relaxation time (Debye) form they 2717 

proposed that the 
0  axis simply be stretched,  2718 

 2719 

   0

1
" sech ln

2
Q   

 
     
 

, 0 < κ ≤ 1       (1.445) 2720 

 2721 

that has a maximum of κ/2 at 0 1  . The full width at half height (FWHH) ΔFK of Q"(logω) is 2722 

approximately given (in decades) by 2723 

 2724 

1.14
FK


  .           (1.446) 2725 

 2726 

that is accurate to within about ±0.1 for Δ. The distribution function from eq. (1.418) is then 2727 

 2728 
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    (1.447) 2729 

 2730 

where  0ln /T    as before. Invoking the relation 2731 
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 2734 

yields 2735 
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    (1.449) 2737 

 2738 

Equation (1.449) can be expressed in other forms using the identities    2 2
cos sin 1    and 2739 

   2 2
cosh sinh 1   . One of these was cited by Fuoss and Kirkwood themselves: 2740 
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.       (1.450) 2742 

 2743 

There are no expressions for Q*(iω), Q'(ω) or ϕ(t) for the Fuoss-Kirkwood distribution. 2744 

 2745 
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1.12.4 Cole-Cole 2746 

 The Cole-Cole function is specified in the frequency domain as [18] 2747 

 2748 
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 ,        (1.451) 2749 

 2750 

where α' has been used rather than the original (1–α) so that, as with the parameters of the other 2751 

functions considered here, Debye behavior is recovered as α'→1 rather than α→0. This difference 2752 

should be remembered when comparing the formulae here with those in the literature. Expanding eq. 2753 

(1.451) gives 2754 
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     (1.452) 2756 

 2757 

and separating the imaginary and real components yields 2758 
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and 2762 
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.       (1.454) 2763 

 2764 

 The function gCC(lnτ) is obtained from eq. (1.408) and placing      
'

1 cos ' sin 'i


      : 2765 

 2766 
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      (1.455) 2767 

 2768 

The Cole-Cole distribution gCC(lnτ) is symmetric about ln(τ0) since 2769 

   0 0cosh 'ln / cosh 'ln /             . The function Q"(lnω) is symmetric for the same reason and 2770 

its maximum value at τ=τ0 is 2771 

 2772 

 max

1
" tan ' / 4

2
Q   .          (1.456) 2773 

 2774 

The FWHH of Q"(logω) is approximately given (in decades) by 2775 

 2776 

1.58
0.32

'
CC


    ,          (1.457) 2777 

 2778 

that is accurate to within about ±0.1 in Δ. Elimination of (ωτ0)
α'
 between eqs. (1.453) and (1.454) yields 2779 

(Appendix D) 2780 

 2781 

     
2 22

1 1 1
2 2 2' " cotan ' / 2 cosec ' / 2Q Q              ,     (1.458) 2782 

 2783 

which is the equation of a circle in the ' "Q iQ  plane with radius  1
2 cosec ' / 2   and center at 2784 

 1 1
2 2, cotan ' / 2    . The upper half of this circle (Q">0 as physically required) is known as a Cole-2785 

Cole plot. Since    cotan ' / 2 tan 1 ' / 2        the center is seen to lie on a line emanating from 2786 

the origin and making an angle  1 ' / 2    with the real axis. There is no known Cole-Cole form for 2787 

ϕ(t). 2788 

 The Cole-Cole and Fuoss Kirkwood functions for Q"(ω) are similar and various approximate 2789 

expressions relating κ and α have been proposed. For example equating the two expressions for 
max

"Q  2790 

gives  tan ' / 4    and equating the limiting low and high frequency power law for each function 2791 

gives κ=α'. 2792 

 2793 
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1.12.5 Davidson-Cole 2794 

 Among all the functions discussed here the Davidson-Cole (DC) function is unique in having 2795 

closed forms for the distribution function g(lnτ), the decay function ϕ(t), and the complex response 2796 

function Q*(iω). The DC function for Q*(iω) is [19] 2797 

 2798 
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 .        (1.459) 2799 

 2800 

The real and imaginary components of Q*(iω) are obtained by putting    01 expi r i    so that 2801 

 
1/2

2 2

01r     and ϕ=arctan(ωτ0). Then 2802 
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      (1.460) 2804 

 2805 

so that 2806 

 2807 

     0' cos cosQ


      ,         (1.461) 2808 

 2809 

and 2810 

 2811 

     0" cos sinQ


      .        (1.462) 2812 

 2813 

The maximum in Q"(ω) occurs at   max 0 tan / 2 1       , and the limiting low and high frequency 2814 

slopes dlnQ"/dlnω are +1 and –γ, respectively. The Cole-Cole plot of Q" vs. Q' is asymmetric, having 2815 

the shape of a semicircle at low frequencies and a limiting slope of dQ"/dQ'=–γπ/2 at high frequencies. 2816 

An approximate value of γ is obtained from the FWHH (in decades) of Q"[log10(ω)], Δ, by the empirical 2817 

relation 2818 

 2819 
1 21.2067 1.6715 0.222569         0.15 1.0;1.14 3.3     .   (1.463) 2820 

 2821 

The decay function  t  is derived from eq. (1.373) and replacing the variable iω with s: 2822 
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 2825 

The inverse Laplace transform (LT)
–1 

of the central term in eq. (1.464) is obtained from the generic 2826 

expression 2827 

 2828 
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      (1.465) 2829 

 2830 

which, when applied using the variables a=1/τ0 and k=γ in eq. (1.465), yields 2831 
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 2834 

Integration of eq. (1.466) from 0 to t yields 2835 
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 2838 

and substituting x=t'/τ0 so that dt'=τ0 dx and      1 1 1

0't x
  


  
  yields 2839 
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 2842 

where  0, /G t   is the incomplete gamma function [eq. (1.33)] that varies between zero and unity. The 2843 

Cole-Davidson decay function is therefore 2844 

 2845 

   0 0/ 1 , /t G t     .         (1.469) 2846 

 2847 

The Davidson-Cole distribution function gDC(lnτ) is obtained from Q*(iω) using eq. (1.418): 2848 
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 is real for 0 / 1    so that   0ln 0DCg      . For 0 / 1    2852 
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   (1.471) 2854 

so that 2855 

 2856 
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       (1.472) 2857 

 2858 

This distribution exhibits an infinite cusp at τ0/τ=1 and is zero at higher values of τ. The loss function 2859 

Q"(ω) has a corresponding long high frequency tail and an almost Debye-like low frequency shape. The 2860 

average relaxation times n  are: 2861 

 2862 
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 ,         (1.473) 2863 

 2864 

where B(γ,n) is the beta function (eq. (1.31)). Two examples of 
n  are 2865 
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 2868 

1.12.6 Glarum Model 2869 

 This is a defect diffusion model [20] that yields a nonexponential decay function and is the only 2870 

one discussed here that is not empirical. Rather it is derived from specific physical assumptions (some of 2871 

which were introduced for mathematical convenience). The model comprises a one dimensional array of 2872 

dipoles each of which can relax either by reorientation to give an exponential decay function or by the 2873 

arrival of a diffusing defect of some sort that instantly relaxes the dipole. The decay function is given by  2874 

 2875 

     0exp / 1t t P t               (1.475) 2876 
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so that 2878 
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,       (1.476) 2880 

where 0  is the single relaxation time for dipole orientation and P(t) is the probability of a defect 2881 

arriving at time t. Assuming that only the nearest defect at t=0 needs be considered and that it lies a 2882 

distance ℓ from the dipole, an expression for P(t) is obtained from the solution to a one dimensional 2883 

diffusion problem with a boundary condition of complete absorption [21]: 2884 
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where D is the diffusion coefficient of the defect. The probability P(ℓ)dℓ that the nearest defect is at a 2888 

distance between ℓ and ℓ+dℓ is obtained by assuming a (random) spatial distribution of defects given by 2889 

 2890 
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,         (1.478) 2891 

 2892 

where ℓ0 is the average value of ℓ and 1/(2ℓ0) is the average number of defects per unit length. 2893 

Averaging  dP(t,ℓ)/dt over values of t,ℓ that are distributed according to eq. (1.478) yields 2894 
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 2897 

and substitution of this expression into eq. (1.476) gives 2898 
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 2901 

The Laplace transform of /d dt  is  *Q i  and that of  t  is obtained from re-arrangement of the 2902 

expression for the Laplace transform of a time derivative [eq. (1.292)]: 2903 
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Laplace transformation of eq. (1.480) yields 2907 
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 2910 

Inserting the Laplace transform of eq. (1.482) [eq. (A25) in Appendix A] yields after minor re-2911 

arrangement 2912 
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 2915 

so that 2916 

 2917 
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 2919 

Equation (1.484) is simplified by introducing the dimensionless parameters 2920 
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to give, after multiplying through by  0 0/ 1i i  , 2924 
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 2927 

The distribution function is obtained by applying eq. (1.429) to eq. (1.486) and noting that 2928 

 1/ exp 1/i     . Substituting i for (–1)
1/2

 then yields: 2929 
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 2932 

Replacing 0 /   by a/a0 and rearranging yields 2933 
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.  (1.488) 2935 

 2936 

The expression enclosed in the {} braces is real for a<a0 whence gG(lnτ)=0. For a>a0 insertion of –i for 2937 

 
1/2

1  when it occurs (to ensure gG(lnτ) is positive) yields 2938 

 2939 
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 2941 

so that the final result is 2942 

 2943 
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      (1.490) 2944 

 2945 

 The shape of the distribution is seen to be determined by a0 that can be regarded as the ratio of a 2946 

diffusional relaxation time 2

0 / D  and the dipole orientation relaxation time τ0. Glarum noted that the 2947 

three special cases of a0>>1, a0=1 and a0=0 correspond to a single relaxation time, a Davidson-Cole 2948 

distribution with γ=0.5 and a Cole-Cole distribution with α=α'=0.5, respectively. For a0=1 the Glarum 2949 

and Davidson-Cole distributions are similar but with the Glarum function for Q"(ω) having a small high 2950 

frequency excess over the Davidson-Cole function. An approximate relation between a0 and the 2951 

Davidson-Cole parameter γ is obtained by expanding the two expressions for Q*(iω). The linear 2952 

approximation to eq. (1.486) for the Glarum function is: 2953 

 2954 
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,     (1.491) 2955 

 2956 

comparison of which with the linear approximation to the Davidson-Cole function yields 2957 

 2958 

   0* 1Q i i              (1.492) 2959 

 2960 

so that 2961 

 2962 
1/2

0

1/2

01

a

a
 


 .           (1.493) 2963 

As noted above, this relation is exact for  0 1 0.5a    and  0 1 1a   . If the dipole and defect 2964 

relaxation times have different activation energies the distribution gG will be temperature dependent. 2965 
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This is not necessarily so if the relaxing dipole is an ion hopping between adjacent sites and the defect is 2966 

a diffusing ion. 2967 

 2968 

1.12.7 Havriliak-Negami 2969 

 Simple combination of the Cole-Cole and Davidson-Cole equations yields the two parameter 2970 

Havriliak-Negami equation [22] 2971 

 2972 
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 2974 

Inserting the relation    ' cos ' / 2 sin ' / 2i i       into eq. (1.494) yields [22] 2975 
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    (1.495) 2977 

 2978 

so that 2979 

 2980 

   0' cosQ R   ,          (1.496) 2981 

   0" sinQ R    ,          (1.497) 2982 

 2983 

where 2984 
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  .        (1.498) 2986 

 2987 

The distribution function is then 2988 
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 (1.499) 2989 

 2990 

so that 2991 
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and 2999 
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          (1.503) 3001 

 3002 

where as before T=τ0/τ and the denominator of eq. (1.500) is real and positive. For α'=1 eq. (1.501) 3003 

reveals that θ is either 0 or π [since sin(α'π)=sin(θ)=0] but provides no information on how the 3004 

ambiguity is to be resolved. On the other hand, eq. (1.502) yields  3005 

 3006 
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1 1
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,        (1.504) 3007 

 3008 

so that whether θ is 0 or π depends on which sign of the square root is chosen. The positive square root 3009 

corresponds to θ=0 (cosθ=+1) and the negative root yields θ=π (cosθ= –1). Equation (1.500) reveals 3010 

that  ln 0HNg    for θ=0, for which (1–T)>0 (since the argument of the denominator must be real) so 3011 
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that τ>τ0. Also τ<τ0 for θ=π (1–T)<0. These conditions correspond to the Davidson-Cole distribution eq. 3012 

(1.472), as required. For γ=1 eq. (1.500) yields the Cole-Cole distribution by simple inspection. 3013 

 Consider now ' 0.5    for which 3014 

 3015 
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 3017 

Equation (1.500) then yields 3018 
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    (1.506) 3020 

 3021 

Note that the argument of the square root is always positive for T>0 and the root itself is therefore real, 3022 

as required. Equating the differential of eq. (1.506) to zero yields a maximum in  lnHNg   of 3023 

magnitude  
1

2/32 


 at T=3. Integration of eq. (1.506) yields unity, as also required (easily 3024 

demonstrated after a change of variable from (1+T) to x
2
). 3025 

 The HN function is often found to provide the best fit to experimental data but this might just be 3026 

a statistical effect because it has two adjustable parameters  ' and    compared with just one for the 3027 

other most often used asymmetric distributions [Davidson-Cole (§1.12.5) and Williams-Watt (§1.12.8 3028 

below)]. 3029 

 3030 

1.12.8 Williams-Watt 3031 

 This function is also known as Kohlrausch-Williams-Watt (KWW) after Kohlrausch's initial 3032 

introduction [23,24]. Williams and Watt [25] found it independently and were the first to apply it to 3033 

dielectric relaxation and since then it has been used to analyze or characterize many other relaxation 3034 

phenomena – thus it is referred to as WW here. It is defined by the decay function 3035 

 3036 

   0exp / 0 1WW t t


      
 

.       (1.507) 3037 

 3038 

None of the functions gWW(lnτ), Q*(iω), Q"(iω), or Q'(iω) can be written in terms of named functions 3039 

except when β=0.5: 3040 
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 3044 

Tables of    2exp erfcw z iz   are available [1] and the function is supplied as a subroutine in some 3045 

software packages. The average relaxation times obtained from eq. (1.363) are: 3046 
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,        (1.510) 3048 

 3049 

specific examples of which are 3050 
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    .     (1.511) 3052 

 3053 

 The full width at half height (Δ in decades) of  10logWWg   is roughly proportional to 1/β 3054 

1.27
0.8


              (1.512) 3055 

 3056 

that is accurate to about 0.1  in Δ for 0.15 0.6   but gives 0.5   rather than 1.44 for β=1. A more 3057 

accurate relation between β and the FWHH (in decades) of  10" logQ   is 3058 

 3059 

   1 20.08984 0.96479 0.004604 0.3 1.0 1.14 3.6               (1.513) 3060 

 3061 

1.13 Boltzmann Superposition 3062 

 Consider a physical system subjected to a series of Heaviside steps dX(t') that define a time 3063 

dependent excitation X(t). For each such step the change in a retarded response dY(t-t') at a later time t is 3064 

given by 3065 

 3066 

         0' 1 ' 'dY t t R X t R R t t dX t         ,  (1.514) 3067 

 3068 

in which      0 1R t R R R t        is a time dependent material property defined by /R Y X  3069 

with a limiting infinitely short time value of R  and a limiting long time value of 0R . The function 3070 

 1 't t     can be regarded as a dimensionless form of  R t  normalized by  0
R R


  with a short 3071 

time limit of zero and a long time limit of unity. The total response  Y t  to a time dependent excitation 3072 

 dX t  is obtained by integrating eq. (1.514) from the infinite past  't    to the present  't t : 3073 

 3074 
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 3076 

Integrating eq. (1.515) by parts [eq (1.20)] yields 3077 
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. (1.516) 3079 

 3080 

The first term on the right hand side is zero because  1 ' 0t t      as  ' 0t t  , 3081 

 1 ' 1t t      as  't t  , and  ' 0X t   . Applying the transformation " 't t t   to eqs. 3082 

(1.515) and (1.516) yields: 3083 
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 .     (1.517) 3085 

 3086 

Equation (1.517) has the same form as the deconvolution integral for the product of Laplace transforms, 3087 

eq. (1.288). Thus Laplace transforming the functions X(t), Y(t) and R(t) to X*(iω), Y*(iω) and R*(iω) 3088 

yields (for s=iω) 3089 

 3090 
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       (1.518) 3091 

 3092 

 Now consider the common case that X(t)=X0exp(-iωt). Insertion of this relation into eq. (1.517) 3093 

for a retardation process gives 3094 
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         (1.519) 3096 

so that 3097 
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or 3100 

 3101 
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 3103 

Proceeding through the same steps for a relaxation response gives 3104 
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      (1.522) 3106 

 3107 

 The quantities  0
R R


  (retardation) and  0P P   (relaxation) are referred to in the literature 3108 

as the dispersions in  'R   and  'P  . This use of the term “dispersion” differs from that used in the 3109 

optical and quantum mechanical literature, for example the term “dispersion relations” also denotes the 3110 

Kronig-Kramer and similar relations between real and imaginary components of a complex function. 3111 

1.14 Relaxation and Retardation Processes 3112 

 The distinction between these two has been mentioned several times already, and it is now 3113 

described in detail. It will be shown that the average relaxation and retardation times are different for 3114 

nonexponential decay functions, and that the frequency dependencies of the real component of complex 3115 

relaxation and retardation functions also differ (reflecting the difference in the corresponding time 3116 

dependent functions). For these purposes, it is convenient to discuss relaxation and retardation processes 3117 

in terms of the functions P(t) and Q(t) introduced in §1.10.  3118 

 To demonstrate that relaxation and retardation times are different for nonexponential response 3119 

functions consider 3120 

 3121 

     *R S P i             (1.523) 3122 

 3123 

and 3124 

 3125 

     *S R Q i              (1.524) 3126 

 3127 

so that 3128 

 3129 

   * 1/ *P i Q i  .          (1.525) 3130 

 3131 

For      * ' "P i P iP     and      * ' "Q i Q iQ     eq. (1.525) implies [cf. eqs (1.194)] 3132 
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           (1.526) 3134 

 3135 

and 3136 

 3137 
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.           (1.527) 3138 

 3139 

Now consider the specific functional forms for P*(iω) and Q*(iω) when ϕ(t) is the exponential function 3140 

exp(–t/τ). For a retardation function 3141 
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      (1.528) 3143 

 3144 

where τQ denotes the retardation time. For a relaxation function  3145 
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 3148 

The relation between the retardation time τQ and relaxation time τP is derived by inserting the 3149 

expressions for P", Q' and Q" into eq. (1.526): 3150 
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    (1.530) 3152 

 3153 

The denominator D of eq. (1.530) is 3154 
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so that 3158 
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    (1.532) 3160 

 3161 

Equations (1.532) and (1.530) reveal that 3162 
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           (1.533) 3164 

 3165 

and 3166 

 3167 
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0

1 1
P P
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   .           (1.534) 3168 

 3169 

Equation (1.534) results from Q∞, Q0, P∞=1/Q∞ and P0=1/Q0 all being real, and eq. (1.533) expresses the 3170 

important fact that P  and Q  differ by an amount that depends on the dispersion in Q'. This dispersion 3171 

can be substantial, amounting to several orders of magnitude for polymers for example. Since Q∞/Q0 is 3172 

less than unity for retardation processes eq. (1.533) indicates that relaxation times are smaller than 3173 

retardation times. Similar analyses of P' as a function of Q' and Q", and of Q" and Q' as functions of P' 3174 

and P", yield the same results. These different derivations must be equivalent for mathematical 3175 

consistency, of course, but it is not immediately obvious that this is so because the frequency 3176 

dependencies of P' and Q' are apparently different [compare eq. (1.529) with eq. (1.528)]. Comparison 3177 

of the full expressions for P' and Q' indicates that all is well, however, since their frequency 3178 

dependencies are, in fact, equivalent: 3179 

 3180 

   
2 2

0 0 02 2 2 2

1
? ?

1 1

P

P Q

P P P Q Q Q
 

   
  

  
             

     (1.535) 3181 

   2 2 2 2 2 2
0 0 0

2 2 2 2

1
? ?

1 1

P P Q

P Q

P P P Q Q     
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      (1.537) 3183 

 3184 

as claimed. 3185 

 The loss tangent, tanδ=P"/P'=Q"/Q' has a different time constant again that we will refer to as 3186 

τtanδ. Similar exercises for both forms of tanδ to that just described reveal that 3187 
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 3190 

so that τtanδ lies between τP and τQ.  3191 

 Equations (1.528) for retardation and (1.529) for relaxation are readily generalized to the non-3192 

exponential case by combining them with eq. (1.366). The results are 3193 
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and 3197 
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,      (1.540) 3199 

 3200 

where ...  denotes g weighted averages. A similar analysis to that just given, when applied to non-3201 

exponential functions of ϕ(t), reveals important relations between the limiting low and high frequency 3202 

limits of Q*(iω): 3203 
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.   (1.541) 3205 

 3206 

In the limit ωτP→0 this expression gives Q0=1/P0, as expected. However, if P0 is zero (as occurs for 3207 

example for the limiting low frequency shear stress σS when the shear viscosity is finite, see §1.10), Q0 3208 

is not infinite but rather approaches a limiting value that is a function of how broad g(lnτP) is. Rewriting 3209 

eq. (1.541) with P0=0 yields 3210 
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 3213 

and the value of Q0 is then 3214 

 3215 
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 3217 

so that 3218 
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  .          (1.544) 3220 

 3221 

If ϕ(t) is exponential then g(lnτP) is a delta function and the average of the square equals the square of 3222 

the average and no dispersion in Q' occurs. Broader g(lnτP) functions generate greater differences 3223 

between the two averages and increase the dispersion in Q'. As noted above this dispersion in Q' can be 3224 

substantial because g(lnτP) is often several decades wide. 3225 

 The distribution functions of relaxation and retardation times, customarily written as g(lnτP) and  3226 

h(lnτQ) respectively, are not equal but clearly must be related. Their nonequivalence is evident from the 3227 

relations 3228 
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and 3232 
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 3235 

Specific relations between g(lnτ) and h(lnτ) have been given by Gross [26,27] and have been restated in 3236 

modern terminology by Ferry [14] for the viscoeleasticity of polymers (see Chapter 3). Simplified 3237 

versions of the Ferry expression, in which contributions from nonzero limiting low frequency dissipative 3238 

properties such as viscosity or electrical conductivity are neglected, are 3239 
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where 3247 
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,         (1.550) 3251 

 3252 

where complications arising from a nonzero limiting low frequency viscosity (see Chapter 3) or limiting 3253 

low frequency resistivity (see Chapter 2) are deferred to those chapters. The considerable difference 3254 

between the two distribution functions is illustrated by the fact that if g(τ) is bimodal then h(τ) can 3255 

exhibit a single peak lying between those in g(τ) [26]. 3256 

1.15 Relaxation in the Temperature Domain 3257 

 Isothermal (and isobaric) frequency dependencies correspond to constant τ and variable ω. 3258 

Constant ω and variable τ is readily achieved by changing the temperature. However, many things 3259 

change with temperature, including relaxation parameters such as the distribution function g(lnτ) and the 3260 

dispersions [  0R R R    and  0S S S   ]. The forms of τ(T) are often well described by the 3261 

Arrhenius or Fulcher/WLF equations: 3262 
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 3267 

where R is the ideal gas constant, τ∞ is the limiting high temperature value of τ, {Ea,B,T0,C1,C2} are 3268 

experimentally determined parameters, and Tr is a reference temperature (usually within the glass 3269 

transition temperature range). The Tr dependent WLF parameters and Tr invariant Fulcher parameters 3270 

are related as  3271 
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 3274 

The effective activation energy for the Fulcher equation is 3275 
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Thus Ea/RT and B/(T–T0) are approximately equivalent to ln(ω). The biggest advantage of temperature 3279 

as a variable is the easy access to the wide range in τ it provides - much larger than the usual isothermal 3280 

frequency ranges (that are happily increasing as technology advances). For an activation of 3281 

/ 10kKaE R  , for example, a temperature excursion from the nitrogen boiling point (77K) to room 3282 

temperature (300K) corresponds to about 21 decades in  . For Ea/R=100kK (not at all unreasonable) the 3283 

range is 210 decades (!). However different relaxation processes have different effective activation 3284 

energies, so a temperature scan may contain overlapping different scales. Nonetheless, 1/T or 1/(T–T0) 3285 

are both preferable to T as independent variables. 3286 

 For an Arrhenius temperature dependence the dispersion ΔP in a material property P(ωτ) is 3287 

proportional to the area of the loss peak as a function of 1/T, 3288 

 3289 

   
1
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2 1
" 1/

a

P P T d T
R E

 
 

   
 

 ,        (1.556) 3290 

 3291 

the derivation of which [13] depends on approximating ΔP as independent of temperature (made for 3292 

mathematical tractability). It is also usual (because of a lack of needed information) to equate 
1

1/ aE


 3293 

to Ea even though eq. (1.328) indicates that 1/ 1a aE E  . 3294 

 The equivalence of ln(ω) and Ea/RT breaks down even as an approximation when ω and τ are not 3295 

invariably multiplied. A representative example of this occurs for the imaginary component of the 3296 

complex electrical resistivity ρ"(ω,τ): 3297 

 3298 
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1.16 Stability of Feedback Amplifiers 3302 

 Linear response theory might not be expected to apply to feedback loops but this is not 3303 

necessarily so. Consider the example discussed in [10] in which the output y(t) of a system with input 3304 

x(t) is determined by an open loop response function g(t) so that in the complex frequency domain  3305 

 3306 

 
 

 

Y s
G s

X s
 .           (1.558) 3307 

 3308 

If some of the output is fed back to the input and the response function is given a gain K  so that 3309 

G(s)→KG(s) then Y(s)=KG(s)[X(s)–Y(s)] or 3310 

 3311 

 
 

 
     

1
C

KG s
Y s X s G s X s

KG s

 
  

 
,       (1.559) 3312 

 3313 

where GC(s) is the closed loop response. The oberved time dependent response is then  3314 

 3315 

 
   

 
 

1
exp

2 1

i

i

KG s X s
y t st ds

i KG s







 

 

 
  

 





       (1.560) 3316 

 3317 

It is not necessary to calculate any residues and apply the residue theorem to obtain specific constraints 3318 

on G(s) and GC(s). For example, to ensure exponential attenuation rather than exponential growth of y(t) 3319 

with increasing time the real parts of the roots of [1+KG(s)]=0 cannot be positive. The reason for this is 3320 

that positive real parts of s for the roots of [1+KG(s)]=0 would produce exponential growth because of 3321 

the term exp(s) in eq. (1.560).  3322 

3323 
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 3324 

 3325 

Appendix A – Laplace Transforms 3326 

 3327 

GENERAL FORMULAE 3328 
 3329 
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(A15)  cosh bt       
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Appendix B Resolution of Two Debye Peaks of Equal Amplitude 3360 

 3361 

Consider two Debye peaks of equal amplitude with relaxation times / R  and R  so that their 3362 

ratio is 2R . This ensures that the average relaxation time of their sum is 1   and that when plotted 3363 

against  10log   the two peaks, if resolved, appear an equal number of decades on each side of 3364 

ln 0  . This symmetry and the equality of amplitudes greatly simplify the mathematics. For 3365 

convenience place x   so that the sum of the two Debye peaks is 3366 

 3367 

2 2 2 2
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1 / 1

x R Rx
y

x R R x
 

 
.          (B1) 3368 

 3369 

The extrema in y  are then obtained from 3370 
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     (B2d) 3375 

 3376 

Defining 2r R  and 2z x  and placing the numerator of eq. (B2d) equal to zero yields 3377 

 3378 

     2 2 2 21 / 1 2 1 1 2 / / 0z r rz r z r rz z r z r               (B3) 3379 

 3380 

Rearranging eq. (B3) yields 3381 

 3382 

         3 2 2 21 1
1 1 3 1 1 3 1 1r z r r r z r r r z r

r r

   
              

   
    (B4a) 3383 

 3384 
3 2

3 2 1 0 0a z a z a z a     .          (B4b) 3385 

 3386 

Equation (B4) is appropriately a cubic equation in z  whose solutions for resolved peaks correspond to 3387 

the two maxima and the intervening minimum. The condition for no resolution is that that eq. B4 has 3388 

one real root and two complex conjugate roots. The condition for borderline resolution is that there are 3389 

three identical solutions, i.e that eq. (B4) is a perfect cube  
3

1 0z    [note that  1; 1r z   is a 3390 
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solution of eq. (B4a)]. For eq. (B4b) to have three equal roots it is required that 
3 2 03 3a a a a      so 3391 

that for 
3 23a a   3392 

 3393 
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2 3

1
1 3 1 3 3 1a r r r a r

r
                (B5a) 3394 

 2 3 1 3r r r               (B5b 3395 

2 6 1 0r r               (B5c) 3396 

 3397 

From eq. (1.2) the solutions to eq. (B5c) are 3398 

 3399 

   
1/2 1/2

3/2
6 36 4 6 32

3 2
2 2

r
  

            (B6) 3400 

 3401 

so that    
1/2

3/2 1/23 2 1 2R      . Note that    1/2 1/21 2 1/ 1 2    , consistent with the equivalence 3402 

of R  and 1/ R  in eq (B1). On a logarithmic scale the ratio of the relaxations times 2r R  is therefore 3403 

 3/2

10log 3 2 0.7656   decades. 3404 

 There is no general solution for two Debye peaks of unequal amplitude because the mathematics 3405 

is intractable (the solution to an 18
th
 order polynomial appears to be necessary!). Consider two Debye 3406 

peaks of amplitudes unity and A with relaxation times τ/R and τT so that their ratio is again R
2
. The 3407 

analysis given above for equal amplitudes is not appropriate in this case because the criterion for the 3408 

edge of resolution is an inflection point with zero slope. An approximate solution can however be 3409 

obtained numerically: 3410 

 3411 
2 8 (1.5 5)R A A   ,          (B7) 3412 

   
22 2.40 2.367ln 1.0 5R A A      ,        (B8) 3413 

 3414 

where as before 2R  is the ratio of the component peak frequencies. Equations (B7) and (B8) agree 3415 

remarkably well for 1.5 5A  : the percentage differences are about 6%  for 1.5A  , 4%  for 3A  , 3416 

and 4%  5A  . 3417 

3418 
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Appendix C Dirac Delta Distribution Function for a Single Relaxation Time 3419 

 3420 

We restrict our analysis to eq. (1.437). The integrand has two components,  
2

2/ 1   and 3421 

 
2

3 2/ 1  . From tables the indefinite integrals are: 3422 

 3423 
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       (C2) 3426 

 3427 

To integrate through the singularities at θ=1 the Cauchy principle values [eq. (1.244)] must be evaluated 3428 

so that each integral must be divided into two parts 
1

1

P





  

  

    , where the value of Δ will be 3429 

shown to be irrelevant. Thus four integrals must be evaluated and then summed. For each integral ε
2
 is 3430 

neglected in anticipation of ε→0. 3431 

(a) Equation (C1) for θ<1: 3432 
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2 1 1 2 42 1 2 1 2 1



 





   
   

      (C3a) 3433 

(b) Equation (C1) for θ>1: 3434 
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    (C3b) 3435 

Thus (a)+(b)=
1

2
 + (terms independent of ε) 3436 

(c) Equation (C2) for θ<1: 3437 
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 3440 

(d) Equation (C2) for θ>1: 3441 
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.   (C4b) 3442 

 3443 

Thus (c)+(d)=
1

(terms independent of )
2



 . 3444 

The sum of all four integrals is 1/ε plus terms independent of ε. Thus when this sum is multiplied by ε 3445 

eq. (1.437) becomes 1 (terms independent of )  =1 for ε→0. 3446 

 There is one remaining detail that has been skipped over that needs to be addressed, namely what 3447 

happens as Δ approaches its extreme values (Δ→0 for θ<1 and Δ→∞ for θ>1). With one exception all 3448 

the terms containing Δ are then either zero or −1/2 and the analysis above is rigorous. The exception is 3449 

the term    21
2
ln 1 ln     for Δ→∞ in eq. (C4b). However, for all values of Δ that are extravagantly 3450 

large but not mathematically infinite this term will still go to zero when multiplied by ε in eq. (1.437) 3451 

[there is probably a mathematical theorem about Cauchy principle values that guarantees this]. 3452 

3453 
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Appendix D Cole-Cole Complex Plane Plot 3454 

 3455 

We derive the equation for Q' versus Q" for the Cole-Cole distribution function and show that it is a 3456 

semicircle with center below the real axis. The derivation follows that given in [28] although 3457 

intermediate steps are spelled out here. For convenience eqs  and  are rewritten in an expanded form in 3458 

which Q* is treated as a retardation function with dispersion ΔQ≡Q0–Q∞, where Q0 and Q∞ are the 3459 

limiting low and high frequency limits of Q': 3460 
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 3465 

The strategy is to eliminate the terms sinh  and cosh  arising from the definitions 3466 

   
'

0 exp


              (D3) 3467 

and 3468 

 0' ln   ,           (D4) 3469 

using 
2 2cosh sinh 1   . The relation  exp cosh sinh      will be used and for convenience the 3470 

variables  sin ' / 2s    and  cos ' / 2c    are introduced. Equations (D1) and (D2) then become 3471 
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 3475 

The next step is to solve for coshθ and sinhθ from eqs. (D5) and (D6d). From eq. (D5): 3476 
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Inserting eq. (D7) into eq. (D6c) yields 3478 
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from which 3480 

 0 2 '
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2 "
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 .          (D9) 3481 

Now apply 
2 2cosh sinh 1    to eqs. (D7) and (D9): 3482 
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      (D10) 3483 

The objective is now to express eq. (Dl0b) as the sum of two terms, one of which is a function of Q' only 3484 

and the other of Q" only, and placing the sum equal to a constant. Expanding the first term in eq. (D10b) 3485 

gives 3486 
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and using 
2 21 c s   then yields 3488 
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Completing the square of the Q" terms then gives 3490 
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3491 

The final expression is obtained from eq. (D13) by restoring the original variables and constants: 
3492 

         
2 2 2 21 1 1

0 0 02 2 4
" cot ' / 2 ' cosec ' / 2Q Q Q Q Q Q Q Q                     (D14) 

3493 

This is eq. (1.458). 
3494 

Equation (D14) is that of circle with its center at 
      1 1

0 02 2
, cot ' / 2Q Q Q Q     

 and radius 
3495 

   1
02

cosec ' / 2Q Q  
. For a single relaxation time (Debye relaxation) α'=1 so that cot(π/2)=0 and 

3496 

cosec(π/2)=1. Equation (D14) then simplifies to (eq (1.436)). 
3497 
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